Do you want to publish a course? Click here

The symplectic origin of conformal and Minkowski superspaces

222   0   0.0 ( 0 )
 Added by Emauele Latini
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in $d=3,4,6$ and $10$ dimensions is also deeply related to the normed division algebras. In this paper we want to show the link between the conformal group and certain types of symplectic transformations over division algebras. Inspired by this observation we then propose a new,realization of the real form of the 4 dimensional conformal and Minkowski superspaces we obtain, respectively, as a Lagrangian supermanifold over the twistor superspace $mathbb{C}^{4|1}$ and a big cell inside it. The beauty of this approach is that it naturally generalizes to the 6 dimensional case (and possibly also to the 10 dimensional one) thus providing an elegant and uniform characterization of the conformal superspaces.



rate research

Read More

We propose supertwistor realisations of $(p,q)$ anti-de Sitter (AdS) superspaces in three dimensions and $cal N$-extended AdS superspaces in four dimensions. For each superspace, we identify a two-point function that is invariant under the corresponding isometry supergroup. This two-point function is a supersymmetric extension (of a function) of the geodesic distance. We also describe a bi-supertwistor formulation for $cal N$-extended AdS superspace in four dimensions.
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a base for the construction of conformally invariant quantum (field) theory, either as phase or configuration spaces. We follow a gauge-invariant Lagrangian approach (of nonlinear sigma-model type) and use a generalized Dirac method for the quantization of constrained systems, which resembles in some aspects the standard approach to quantizing coadjoint orbits of a group G. Physical wave functions, Haar measures, orthonormal basis and reproducing (Bergman) kernels are explicitly calculated in and holomorphic picture in these Cartan domains for both scalar and spinning quantum particles. Similarities and differences with other results in the literature are also discussed and an extension of Schwingers Master Theorem is commented in connection with closure relations. An adaptation of the Borns Reciprocity Principle (BRP) to the conformal relativity, the replacement of space-time by the 8-dimensional conformal domain at short distances and the existence of a maximal acceleration are also put forward.
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincare and Euclidean superalgebras. We consider in detail new family of four supertwists of N=1 Poincare superalgebra and provide as well their Euclidean counterpart. The proposed supertwists are better adjusted to the description of deformed D=4 Euclidean supersymmetries with independent left-chiral and right-chiral supercharges. They lead to new quantum superspaces, obtained by the superextension of twist deformations of spacetime providing Lie-algebraic noncommutativity of space-time coordinates. In the Hopf-algebraic Euclidean SUSY framework the considered supertwist deformations provide an alternative to the N=1/2 SUSY Seibergs star product deformation scheme.
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of k-Minkowski spacetime. The corresponding quantum Poincare-Weyl Lie algebra of infinitesimal translations, rotations and dilatations is obtained. The dAlembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
379 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even though the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا