The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses sub-optimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the $2015$ European Pulsar Timing Array data [Desvignes et al. (in prep.)]. Our analysis of the GWB in the $sim 2 - 90$ nHz band shows consistency with isotropy, with the strain amplitude in $l>0$ spherical harmonic multipoles $lesssim 40%$ of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.