Do you want to publish a course? Click here

Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?

229   0   0.0 ( 0 )
 Added by Qi Hao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.



rate research

Read More

126 - Y. Ouyang , P. F. Chen , S. Q. Fan 2020
Solar filaments are dark structures on the solar disk, with an elongated spine and several barbs extending out from the spine. When appearing above the solar limb, a filament is called a prominence, with several feet extending down to the solar surface. It was generally thought that filament barbs are simply the prominence feet veering away from the spine and down to the solar surface. However, it was recently noticed that there might be another dynamic type of barbs, which were proposed to be due to filament thread longitudinal oscillation. If this is the case, the dynamic barbs would not extend down to the solar surface. With the quadrature observations of a filament barb on 2011 June 5 from the {it Solar Dynamics Observatory} and the {it STEREO} satellites, we confirm that the filament barb is due to filament thread longitudinal oscillations. Viewed from the side, the filament barb looks like an appendix along the spine of the prominence, and does not extend down to the solar surface as a foot.
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona. Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to the coronal heating, coronal seismology, solar flares, and coronal mass ejections (CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations, and helicity of filaments. With high-resolution and high-sensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.
Spectropolarimetric observations combined with tomographic imaging techniques have revealed that all pre-main sequence (PMS) stars host multipolar magnetic fields, ranging from strong and globally axisymmetric with ~>kilo-Gauss dipole components, to complex and non-axisymmetric with weak dipole components (<~0.1 kG). Many host dominantly octupolar large-scale fields. We argue that the large-scale magnetic properties of a PMS star are related to its location in the Hertzsprung-Russell diagram. This conference paper is a synopsis of Gregory et al. (2012), updated to include the latest results from magnetic mapping studies of PMS stars.
We analyze the observations of EUV loop evolution associated with the filament eruption located at the border of an active region. The event SOL2013-03-16T14:00 was observed with a large difference of view point by the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory --A spacecraft. The filament height is fitted with the sum of a linear and exponential function. These two phases point to different physical mechanisms such as: tether-cutting reconnection and a magnetic instability. While no X-ray emission is reported, this event presents the classical eruption features like: separation of double ribbons and the growth of flare loops. We report the migration of the southern foot of the erupting filament flux rope due to the interchange reconnection with encountered magnetic loops of a neighbouring AR. Parallel to the erupting filament, a stable filament remains in the core of active region. The specificity of this eruption is that coronal loops, located above the nearly joining ends of the two filaments, first contract in phase, then expand and reach a new stable configuration close to the one present at the eruption onset. Both contraction and expansion phases last around 20 min. The main difference with previous cases is that the PIL bent about 180 deg around the end of the erupting filament because the magnetic configuration is at least tri-polar. These observations are challenging for models which interpreted previous cases of loop contraction within a bipolar configuration. New simulations are required to broaden the complexity of the configurations studied.
A filament eruption, accompanied by a B9.5 flare, coronal dimming and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5 degrees, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 A stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 A and Halpha show that when it becomes emissive in He II, it tends to disappear in Halpha, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا