Do you want to publish a course? Click here

Doping effects on the magnetic frustration in the honeycomb iridates

250   0   0.0 ( 0 )
 Added by Sujit Das
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the doping effects of magnetic and nonmagnetic impurities injected to the honeycomb iridate sample of Na2IrO3 . Both the doping result in changing the ordering temperature as well as the Curie-Weiss temperature of the parent sample as a consequence of enhancement of the lattice frustration, screening of the Ir atoms and spin-orbit effects that reflects in the susceptibility and specific heat measurements. Our findings are corroborated by a detailed comparative study of various magnetic and nonmagnetic impurity atoms that have notable effects on different electronic properties of the doped compounds.



rate research

Read More

In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/2 moments typically show long-range magnetic order at low temperature, thus defying the formation of a spin-liquid ground state. Using resonant inelastic x-ray scattering (RIXS), we here report on a proximate spin liquid regime with clear fingerprints of Kitaev physics in the magnetic excitations of the honeycomb iridates alpha-Li2IrO3 and Na2IrO3. We observe a broad continuum of magnetic excitations that persists up to at least 300K, more than an order of magnitude larger than the magnetic ordering temperatures. We prove the magnetic character of this continuum by an analysis of the resonance behavior. RIXS measurements of the dynamical structure factor for energies within the continuum show that dynamical spin-spin correlations are restricted to nearest neighbors. Notably, these spectroscopic observations are also present in the magnetically ordered state for excitation energies above the conventional magnon excitations. Phenomenologically, our data agree with inelastic neutron scattering results on the related honeycomb compound RuCl3, establishing a common ground for a proximate Kitaev spin-liquid regime in these materials.
The complexity of the antiferromagnetic orders observed in the honeycomb iridates is a double-edged sword in the search for a quantum spin-liquid ground state: both attesting that the magnetic interactions provide many of the necessary ingredients, but simultaneously impeding access. As a result, focus has been drawn to the unusual magnetic orders and the hints they provide to the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue as to the possibilities of other nearby ground states cite{Anderson}. Here we use extreme magnetic fields to reveal the extent of the spin correlations in $gamma$-lithium iridate. We find that a magnetic field with a small component along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the correlated spin state possesses only a small fraction of the total moment, without evidence for long-range order up to the highest attainable magnetic fields (>90 T).
143 - G. Cao , T. F. Qi , L. Li 2013
We report the successful synthesis of single-crystals of the layered iridate, (Na$_{1-x}$Li$_{x}$)$_2$IrO$_3$, $0leq x leq 0.9$, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na$_2$IrO$_3$ and Li$_2$IrO$_3$, while maintaing the novel quantum magnetism of the honeycomb Ir$^{4+}$ planes. The measured phase diagram demonstrates a dramatic suppression of the Neel temperature, $T_N$, at intermediate $x$ suggesting that the magnetic order in Na$_2$IrO$_3$ and Li$_2$IrO$_3$ are distinct, and that at $xapprox 0.7$, the compound is close to a magnetically disordered phase that has been sought after in Na$_2$IrO$_3$ and Li$_2$IrO$_3$. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir$^{4+}$ ions changes sign from Na$_2$IrO$_3$ and Li$_2$IrO$_3$, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by $jeff=1/2$ moments.
183 - H. Wadati , K. Kato , Y. Wakisaka 2011
We investigated the electronic structure of layered Mn oxide Bi3Mn4O12(NO3) with a Mn honeycomb lattice by x-ray absorption spectroscopy. The valence of Mn was determined to be 4+ with a small charge-transfer energy. We estimated the values of superexchange interactions up to the fourth nearest neighbors (J1, J2, J3, and J4) by unrestricted Hartree-Fock calculations and a perturbation method. We found that the absolute values of J1 through J4 are similar with positive (antiferromagnetic) J1 and J4, and negative (ferromagnetic) J2 and J3, due to Mn-O-O-Mn pathways activated by the smallness of charge-transfer energy. The negative J3 provides magnetic frustration in the honeycomb lattice to prevent long-range ordering.
A family of insulating iridates with chemical formula Li$_2$IrO$_3$ has recently been discovered, featuring three distinct crystal structures $alpha,beta,gamma$ (honeycomb, hyperhoneycomb, stripyhoneycomb). Measurements on the three-dimensional polytypes, $beta$- and $gamma$-Li$_2$IrO$_3$, found that they magnetically order into remarkably similar spiral phases, exhibiting a non-coplanar counter-rotating spiral magnetic order with equivalent q=0.57 wavevectors. We examine magnetic Hamiltonians for this family and show that the same triplet of nearest-neighbor Kitaev-Heisenberg-Ising (KJI) interactions reproduces this spiral order on both $beta,gamma$-Li$_2$IrO$_3$ structures. We analyze the origin of this phenomenon by studying the model on a 1D zigzag chain, a structural unit common to the three polytypes. The zigzag-chain solution transparently shows how the Kitaev interaction stabilizes the counter-rotating spiral, which is shown to persist on restoring the inter-chain coupling. Our minimal model makes a concrete prediction for the magnetic order in $alpha$-Li$_2$IrO$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا