Do you want to publish a course? Click here

Homology for Quandles with Partial Group Operations

300   0   0.0 ( 0 )
 Added by Kokoro Tanaka
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A quandle is a set that has a binary operation satisfying three conditions corresponding to the Reidemeister moves. Homology theories of quandles have been developed in a way similar to group homology, and have been applied to knots and knotted surfaces. In this paper, a homology theory is defined that unifies group and quandle homology theories. A quandle that is a union of groups with the operation restricting to conjugation on each group component is called a multiple conjugation quandle (MCQ, defined rigorously within). In this definition, compatibilities between the group and quandle operations are imposed which are motivated by considerations on colorings of handlebody-links. A homology theory defined here for MCQs take into consideration both group and quandle operations, as well as their compatibility. The first homology group is characterized, and the notion of extensions by $2$-cocycles is provided. Degenerate subcomplexes are defined in relation to simplicial decompositions of prismatic (products of simplices) complexes and group inverses. Cocycle invariants are also defined for handlebody-links.



rate research

Read More

We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as an $Sp(2g,mathbb{Z})$-module.
134 - Takefumi Nosaka 2018
We show a de Rham theory for cubical manifolds, and study rational homotopy type of the classifying spaces of smooth quandles. We also show that secondary characteristic classes in cite{Dup2,DK} produce cocycles of quandles.
175 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
137 - Ciprian Manolescu 2018
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.
We prove new vanishing results on the growth of higher torsion homologies for suitable arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain strong asymptotic bounds for the torsion growth. As a central tool, we introduce a quantitative homotopical method called effective rebuilding. This constructs small classifying spaces of finite index subgroups, at the same time controlling the complexity of the homotopy. The method easily applies to free abelian groups and then extends recursively to a wide class of residually finite groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا