No Arabic abstract
We present $U_{336}V_{606}J_{125}H_{160}$ follow-up $HST$ observations of 16 $zsim3$ candidate LyC emitters in the HS1549+1919 field. With these data, we obtain high spatial-resolution photometric redshifts of all sub-arcsecond components of the LyC candidates in order to eliminate foreground contamination and identify robust candidates for leaking LyC emission. Of the 16 candidates, we find one object with a robust LyC detection that is not due to foreground contamination. This object (MD5) resolves into two components; we refer to the LyC-emitting component as MD5b. MD5b has an observed 1500AA to 900AA flux-density ratio of $(F_{UV}/F_{LyC})_{obs}=4.0pm2.0$, compatible with predictions from stellar population synthesis models. Assuming minimal IGM absorption, this ratio corresponds to a relative (absolute) escape fraction of $f_{esc,rel}^{MD5b}=75-100$% ($f_{esc,abs}^{MD5b}=14-19$%). The stellar population fit to MD5b indicates an age of $lesssim50$Myr, which is in the youngest 10% of the $HST$ sample and the youngest third of typical $zsim3$ Lyman break galaxies, and may be a contributing factor to its LyC detection. We obtain a revised, contamination-free estimate for the comoving specific ionizing emissivity at $z=2.85$, indicating (with large uncertainties) that star-forming galaxies provide roughly the same contribution as QSOs to the ionizing background at this redshift. Our results show that foreground contamination prevents ground-based LyC studies from obtaining a full understanding of LyC emission from $zsim3$ star-forming galaxies. Future progress in direct LyC searches is contingent upon the elimination of foreground contaminants through high spatial-resolution observations, and upon acquisition of sufficiently deep LyC imaging to probe ionizing radiation in high-redshift galaxies.
An analysis of the dynamics of a star formation event is performed. It is shown that galaxies able to drive leftover gas to sufficient altitudes in a few million years are characterized by two basic properties: small sizes (<1kpc) and high star formation rate surface densities (Sigma_SFR > 10 Msun/yr/kpc2). For the parameter space of relevance, the outflow is primarily driven by supernovae with radiation pressure being significant but subdominant. Our analysis provides the unifying physical origin for a diverse set of observed LyC leakers, including the green-peas galaxies, [SII]-weak galaxies, Lyman-alpha emitters, with these two characteristics as the common denominator. Among verifiable physical properties of LyC leakers, we predict that (1) the newly formed stellar masses are are typically in the range of 1e8-1e10 Msun, except perhaps ULIRGs, (2) the outflow velocities are typically in the range typically of 100-600km/s, but may exceed 1e3 km/s in ULIRGs, with a strong positive correlation between the stellar masses formed and the outflow velocities, (3) the overall escape fraction of galaxies is expected to increase with increasing redshift, given the cosmological trend that galaxies become denser and more compact with increasing redshift. In addition, two interesting by-product predictions are also borne out. First, ULIRGs appear to be in a parameter region where they should be prodigious LyC leakers, unless there is a large ram-pressure. Second, Lyman break galaxies (LBGs) are not supposed to be prodigious LyC leakers in our model, given their claimed effective radii exceeding 1kpc.
Observations of reionization-era analogs at $zsim3$ are a powerful tool for constraining reionization. Rest-ultraviolet observations are particularly useful, in which both direct and indirect tracers of ionizing-photon production and escape can be observed. We analyse a sample of 124 $zsim3$ galaxies from the Keck Lyman Continuum Spectroscopic Survey, with sensitive spectroscopic measurements of the Lyman continuum region. We present a method of removing foreground contamination from our sample using high-resolution, multi-band Hubble Space Telescope imaging. We re-measure the global properties of the cleaned sample of 13 individually-detected Lyman continuum sources and 107 individually-undetected sources, including a sample-averaged absolute escape fraction of $f_{rm esc,abs}=0.06pm0.01$ and a sample-averaged ratio of ionizing to non-ionizing ultraviolet flux density of $<f_{900}/f_{1500}>_{rm out}=0.040pm0.006$, corrected for attenuation from the intergalactic and circumgalactic media. Based on composite spectra, we also recover a strong positive correlation between $<f_{900}/f_{1500}>_{rm out}$ and Ly$alpha$ equivalent width (W$_lambda$(Ly$alpha$)) and a negative correlation between $<f_{900}/f_{1500}>_{rm out}$ and UV luminosity. As in previous work, we interpret the relationship between $<f_{900}/f_{1500}>_{rm out}$ and W$_lambda$(Ly$alpha$) in terms of the modulation of the escape of ionizing radiation from star-forming galaxies based on the covering fraction of neutral gas. We also use a W$_lambda$(Ly$alpha$)-weighted $<f_{900}/f_{1500}>_{rm out}$ to estimate an ionizing emissivity from star-forming galaxies at $zsim3$ as $epsilon_{rm LyC}simeq5.5times10^{24}$erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$. This estimate, evaluated using the uncontaminated sample of this work, reaffirms that galaxies provide the majority of the ionizing background at $zsim3$ and beyond.
We present a survey for optically thick Lyman limit absorbers at z<2.6 using archival Hubble Space Telescope observations with the Faint Object Spectrograph and Space Telescope Imaging Spectrograph. We identify 206 Lyman limit systems (LLSs) increasing the number of catalogued LLSs at z<2.6 by a factor of ~10. We compile a statistical sample of 50 tau_LLS > 2 LLSs drawn from 249 QSO sight lines that avoid known targeting biases. The incidence of such LLSs per unit redshift, l(z)=dn/dz, at these redshifts is well described by a single power law, l(z) = C1 (1+z)^gamma, with gamma=1.33 +/- 0.61 at z<2.6, or with gamma=1.83 +/- 0.21 over the redshift range 0.2 < z < 4.9. The incidence of LLSs per absorption distance, l(X), decreases by a factor of ~1.5 over the ~0.6 Gyr from z=4.9 to 3.5; l(X) evolves much more slowly at low redshifts, decreasing by a similar factor over the ~8 Gyr from z=2.6 to 0.25. We show that the column density distribution function, f(N(HI)), at low redshift is not well fitted by a single power law index (f(N(HI)) = C2 N(HI)^(-beta)) over the column density range 13 < log N(HI) < 22 or log N(HI) >17.2. While low and high redshift f(N(HI)) distributions are consistent for log N(HI)>19.0, there is some evidence that f(N(HI)) evolves with z for log N(HI) < 17.7, possibly due to the evolution of the UV background and galactic feedback. Assuming LLSs are associated with individual galaxies, we show that the physical cross section of the optically thick envelopes of galaxies decreased by a factor of ~9 from z~5 to 2 and has remained relatively constant since that time. We argue that a significant fraction of the observed population of LLSs arises in the circumgalactic gas of sub-L* galaxies.
We present the results of combined deep Keck/NIRC2, HST/WFC3 near-infrared and Herschel far infrared observations of an extremely star forming dusty lensed galaxy identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS J133542.9+300401). The galaxy is gravitationally lensed by a massive WISE identified galaxy cluster at $zsim1$. The lensed galaxy is spectroscopically confirmed at $z=2.685$ from detection of $rm {CO (1 rightarrow 0)}$ by GBT and from detection of $rm {CO (3 rightarrow 2)}$ obtained with CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background dusty star-forming galaxy (DSFG) which allows us to study the source plane properties of the target. The best-fit lens model provide magnification of $mu_{rm star}=2.10pm0.11$ and $mu_{rm dust}=2.02pm0.06$ for the stellar and dust components respectively. Multi-band data yields a magnification corrected star formation rate of $1900(pm200),M_{odot}{rm yr^{-1}}$ and stellar mass of $6.8_{-2.7}^{+0.9}times10^{11},M_{odot}$ consistent with a main sequence of star formation at $zsim2.6$. The CO observations yield a molecular gas mass of $8.3(pm1.0)times10^{10},M_{odot}$, similar to the most massive star-forming galaxies, which together with the high star-formation efficiency are responsible for the intense observed star formation rates. The lensed DSFG has a very short gas depletion time scale of $sim40$ Myr. The high stellar mass and small gas fractions observed indicate that the lensed DSFG likely has already formed most of its stellar mass and could be a progenitor of the most massive elliptical galaxies found in the local Universe.
Identifying low-redshift galaxies that emit Lyman Continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly analogues of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at $zsim3$ and $zsim0$. We find that the simulated galaxies with high LyC escape fractions ($f_{rm esc}$) often exhibit high O32 and populate the same regions of the R23-O32 plane as $zsim3$ LyC leakers. However, we show that viewing angle, metallicity, and ionisation parameter can all impact where a galaxy resides on the O32-$f_{rm esc}$ plane. Based on emission line diagnostics and how they correlate with $f_{rm esc}$, lower-metallicity LyC leakers at $zsim3$ appear to be good analogues of reionization-era galaxies. In contrast, local [SII]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the SII-BPT diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using IR and nebular emission lines. We show that our model using only [CII]$_{rm 158mu m}$ and [OIII]$_{rm 88mu m}$ can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS1149_JD1 at $z=9.1$ is the most likely galaxy to be actively contributing to the reionization of the Universe.