The arching phenomenon is an emergent pattern formed by a $c$-sized crowd of intelligent, goal-oriented, autonomous, heterogeneous individuals moving towards a $w$-wide exit along a long $W$-wide corridor, where $W>w$. We collected empirical data from microsimulations to identify the combination effects of~$c$ and~$w$ to the time~$T$ of the onset of and the size~$S$ of the formation of the arch. The arch takes on the form of the perimeter of a half ellipse halved along the minor axis. We measured the~$S$ with respect to the lengths of the major~$M$ and minor~$m$ axes of the ellipse, respectively. The mathematical description of the formation of this phenomenon will be an important information in the design of walkways to control and easily direct the flow of large crowds, especially during panic egress conditions.