No Arabic abstract
The three-dimensional momenta of quarks inside a hadron are encoded in transverse momentum-dependent parton distribution functions (TMDs). This work presents an exploratory lattice QCD study of a TMD observable in the pion describing the Boer-Mulders effect, which is related to polarized quark transverse momentum in an unpolarized hadron. Particular emphasis is placed on the behavior as a function of a Collins-Soper evolution parameter quantifying the relative rapidity of the struck quark and the initial hadron, e.g., in a semi-inclusive deep inelastic scattering (SIDIS) process. The lattice calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition of TMDs via hadronic matrix elements of a quark bilocal operator with a staple-shaped gauge connection; in this context, the evolution parameter is related to the staple direction. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. In contrast to an earlier nucleon study, due to the lower mass of the pion, the calculated data enable quantitative statements about the physically interesting limit of large relative rapidity. In passing, the similarity between the Boer-Mulders effects extracted in the pion and the nucleon is noted.
The Boer-Mulders transverse momentum-dependent parton distribution (TMD) characterizes polarized quark transverse momentum in an unpolarized hadron. Techniques previously developed for lattice calculations of nucleon TMDs are applied to the pion. These techniques are based on the evaluation of matrix elements of quark bilocal operators containing a staple-shaped Wilson connection. Results for the Boer-Mulders transverse momentum shift in the pion, obtained at a pion mass of $m_{pi} = 518, mbox{MeV} $, are presented and compared to corresponding results in the nucleon.
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, process-dependent Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g_1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n_f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
We present the first determination of the $x$-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings $aapprox 0.12$ and 0.15~fm and three pion masses $M_piapprox 220$, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
We present a lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $N_f=2+1$ Wilson-clover dynamical fermions, $m_pi simeq 156~$MeV and $Lsimeq 2.9~$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $Npi$ in $p$-wave and $Nsigma$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $N(0)pi(0)pi(0)$ (mixed with $N(0)sigma(0)$) and $N(p)pi(-p)$ with $psimeq 2pi/L$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $Npi$ phase-shift would -- in the approximation of purely elastic $Npi$ scattering -- imply an additional eigenstate near the Roper mass $m_Rsimeq 1.43~$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $Npi$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $Npipi$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. The study of the coupled-channel scattering including a three-particle decay $Npipi$ remains a challenge.
Proposals for physics beyond the standard model often include new colored particles at or beyond the scale of electroweak symmetry breaking. Any new particle with a sufficient lifetime will bind with standard model gluons and quarks to form a spectrum of new hadrons. Here we focus on colored particles in the octet, decuplet, 27-plet, 28-plet and 35-plet representations of SU(3) color because these can form hadrons without valence quarks. In every case, lattice creation operators are constructed for all angular momentum, parity and charge conjugation quantum numbers. Computations with fully-dynamical lattice QCD configurations produce numerical results for mass splittings within this new hadron spectrum. A previous quenched lattice study explored the octet case for certain quantum number choices, and our findings provide a reassessment of those early results.