No Arabic abstract
The use of composable abstractions allows the application of new and established algorithms to a wide range of problems while automatically inheriting the benefits of well-known performance optimisations. This work highlights the composition of the PETSc DMPlex domain topology abstraction with the Firedrake automated finite element system to create a PDE solving environment that combines expressiveness, flexibility and high performance. We describe how Firedrake utilises DMPlex to provide the indirection maps required for finite element assembly, while supporting various mesh input formats and runtime domain decomposition. In particular, we describe how DMPlex and its accompanying data structures allow the generic creation of user-defined discretisations, while utilising data layout optimisations that improve cache coherency and ensure overlapped communication during assembly computation.
Despite decades of research in this area, mesh adaptation capabilities are still rarely found in numerical simulation software. We postulate that the primary reason for this is lack of usability. Integrating mesh adaptation into existing software is difficult as non-trivial operators, such as error metrics and interpolation operators, are required, and integrating available adaptive remeshers is not straightforward. Our approach presented here is to first integrate Pragmatic, an anisotropic mesh adaptation library, into DMPlex, a PETSc object that manages unstructured meshes and their interactions with PETScs solvers and I/O routines. As PETSc is already widely used, this will make anisotropic mesh adaptation available to a much larger community. As a demonstration of this we describe the integration of anisotropic mesh adaptation into Firedrake, an automated Finite Element based system for the portable solution of partial differential equations which already uses PETSc solvers and I/O via DMPlex. We present a proof of concept of this integration with a three-dimensional advection test case.
Creating scalable, high performance PDE-based simulations requires a suitable combination of discretizations, differential operators, preconditioners and solvers. The required combination changes with the application and with the available hardware, yet software development time is a severely limited resource for most scientists and engineers. Here we demonstrate that generating simulation code from a high-level Python interface provides an effective mechanism for creating high performance simulations from very few lines of user code. We demonstrate that moving from one supercomputer to another can require significant algorithmic changes to achieve scalable performance, but that the code generation approach enables these algorithmic changes to be achieved with minimal development effort.
We present a simple mathematical framework and API for parallel mesh and data distribution, load balancing, and overlap generation. It relies on viewing the mesh as a Hasse diagram, abstracting away information such as cell shape, dimension, and coordinates. The high level of abstraction makes our interface both concise and powerful, as the same algorithm applies to any representable mesh, such as hybrid meshes, meshes embedded in higher dimension, and overlapped meshes in parallel. We present evidence, both theoretical and experimental, that the algorithms are scalable and efficient. A working implementation can be found in the latest release of the PETSc libraries.
Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of ECP applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modelling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multi-physics algorithms. AMReX supports algorithms that solve systems of partial differential equations (PDEs) in simple or complex geometries, and those that use particles and/or particle-mesh operations to represent component physical processes. In this paper, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.
Learning latent representations of registered meshes is useful for many 3D tasks. Techniques have recently shifted to neural mesh autoencoders. Although they demonstrate higher precision than traditional methods, they remain unable to capture fine-grained deformations. Furthermore, these methods can only be applied to a template-specific surface mesh, and is not applicable to more general meshes, like tetrahedrons and non-manifold meshes. While more general graph convolution methods can be employed, they lack performance in reconstruction precision and require higher memory usage. In this paper, we propose a non-template-specific fully convolutional mesh autoencoder for arbitrary registered mesh data. It is enabled by our novel convolution and (un)pooling operators learned with globally shared weights and locally varying coefficients which can efficiently capture the spatially varying contents presented by irregular mesh connections. Our model outperforms state-of-the-art methods on reconstruction accuracy. In addition, the latent codes of our network are fully localized thanks to the fully convolutional structure, and thus have much higher interpolation capability than many traditional 3D mesh generation models.