Do you want to publish a course? Click here

A Mock Data and Science Challenge for Detecting an Astrophysical Stochastic Gravitational-Wave Background with Advanced LIGO and Advanced Virgo

131   0   0.0 ( 0 )
 Added by Duncan Meacher
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave background signal of astrophysical origin. Here we present a series of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter estimation methods and interpret the results. We introduce the production of these mock data sets that includes a realistic observing scenario data set where we account for different sensitivities of the advanced detectors as they are continuously upgraded toward their design sensitivity. After analysing these with the standard isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave background energy density to within $2sigma$ for all of the data sets and present the results from the parameter estimation. The results from this mock data and science challenge show that advanced LIGO and Virgo will be ready and able to make a detection of an astrophysical gravitational-wave background within a few years of operations of the advanced detectors, given a high enough rate of compact binary coalescing events.



rate research

Read More

Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (scalar) GW modes and spin-1 (vector) modes, especially with an expected network of Advanced LIGO, Advanced Virgo and KAGRA. For two independent null streams for four non-co-aligned GW detectors, we study a location on the sky, exactly at which the spin-0 modes of GWs vanish in any null stream for the GW detector network, though the strain output at a detector may contain the spin-0 modes. Our numerical calculations show that there exist seventy sky positions that satisfy this condition of killing the spin-0 modes in the null streams. If a GW source with an electromagnetic counterpart is found in one of the seventy sky positions, the spin-1 modes will be testable separately from the spin-0 modes by the null stream method. In addition, we study a superposition of the two null streams to show that any one of the three modes (one combined spin-0 and two spin-1 modes) can be eliminated by suitably adjusting a weighted superposition of the null streams and thereby a set of the remaining polarization modes can be experimentally tested.
We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is BNS, NSBH, and BBH systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
138 - C. Palomba 2012
We present results from searches of recent LIGO and Virgo data for continuous gravitational wave signals (CW) from spinning neutron stars and for a stochastic gravitational wave background (SGWB). The first part of the talk is devoted to CW analysis with a focus on two types of searches. In the targeted search of known neutron stars a precise knowledge of the star parameters is used to apply optimal filtering methods. In the absence of a signal detection, in a few cases, an upper limit on strain amplitude can be set that beats the spindown limit derived from attributing spin-down energy loss to the emission of gravitational waves. In contrast, blind all-sky searches are not directed at specific sources, but rather explore as large a portion of the parameter space as possible. Fully coherent methods cannot be used for these kind of searches which pose a non trivial computational challenge. The second part of the talk is focused on SGWB searches. A stochastic background of gravitational waves is expected to be produced by the superposition of many incoherent sources of cosmological or astrophysical origin. Given the random nature of this kind of signal, it is not possible to distinguish it from noise using a single detector. A typical data analysis strategy relies on cross-correlating the data from a pair or several pairs of detectors, which allows discriminating the searched signal from instrumental noise. Expected sensitivities and prospects for detection from the next generation of interferometers are also discussed for both kind of sources.
We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact binary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgos first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 square degrees in 2015 to ~200 square degrees in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا