Do you want to publish a course? Click here

Quantum teleportation of propagating quantum microwaves

293   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution.



rate research

Read More

We study quantum state tomography, entanglement detection, and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of the following key elements: propagation channels, beam splitters, linear amplifiers, and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyze our techniques with numerical examples and experimental data, and compare them with the scheme developed in Eichler $et$ $al$ (2011 Phys. Rev. Lett. 106 220503; 2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.
The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing, and may open opportunities for studies of heat transport at the nanoscale, also in the quantum regime. Here we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to $4times 10^{-4}$ photons/$sqrt{mbox{Hz}}$ and a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a {it propagating} quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of all-optical quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.
Quantum teleportation, the faithful transfer of an unknown input state onto a remote quantum system, is a key component in long distance quantum communication protocols and distributed quantum computing. At the same time, high frequency nano-optomechanical systems hold great promise as nodes in a future quantum network, operating on-chip at low-loss optical telecom wavelengths with long mechanical lifetimes. Recent demonstrations include entanglement between two resonators, a quantum memory and microwave to optics transduction. Despite these successes, quantum teleportation of an optical input state onto a long-lived optomechanical memory is an outstanding challenge. Here we demonstrate quantum teleportation of a polarization-encoded optical input state onto the joint state of a pair of nanomechanical resonators. Our protocol also allows for the first time to store and retrieve an arbitrary qubit state onto a dual-rail encoded optomechanical quantum memory. This work demonstrates the full functionality of a single quantum repeater node, and presents a key milestone towards applications of optomechanical systems as quantum network nodes.
Efficient all-photonic quantum teleportation requires fast and deterministic sources of highly indistinguishable and entangled photons. Solid-state-based quantum emitters--notably semiconductor quantum dots--are a promising candidate for the role. However, despite the remarkable progress in nanofabrication, proof-of-concept demonstrations of quantum teleportation have highlighted that imperfections of the emitter still place a major roadblock in the way of applications. Here, rather than focusing on source optimization strategies, we deal with imperfections and study different teleportation protocols with the goal of identifying the one with maximal teleportation fidelity. Using a quantum dot with sub-par values of entanglement and photon indistinguishability, we show that the average teleportation fidelity can be raised from below the classical limit to 0.842(14). Our results, which are backed by a theoretical model that quantitatively explains the experimental findings, loosen the very stringent requirements set on the ideal entangled-photon source and highlight that imperfect quantum dots can still have a say in teleportation-based quantum communication architectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا