Do you want to publish a course? Click here

Response of Atmospheric Biomarkers to NOx-induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M-Dwarf Stars

140   0   0.0 ( 0 )
 Added by John Lee Grenfell
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding whether M-dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M-dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides in the planetary atmosphere, hence affecting biomarkers such as ozone. We apply a stationary model, that is, without a time-dependence, hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. For the flaring case O3 is mainly destroyed via direct titration with nitrogen oxides and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases became more important for shielding the planetary surface from ultra-violet radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker nitrous oxide could survive in the planetary atmosphere under all conditions of stellar activity considered here, which clearly has important implications for missions that aim to detect spectroscopic biomarkers.



rate research

Read More

As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planets surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the effciency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.
We find that variations in the UV emissions of cool M-dwarf stars have a potentially large impact upon atmospheric biosignatures in simulations of Earth-like exoplanets i.e. planets with Earths development, and biomass and a molecular nitrogen-oxygen dominated atmosphere. Starting with an assumed black-body stellar emission for an M7 class dwarf star, the stellar UV irradiation was increased stepwise and the resulting climate-photochemical response of the planetary atmosphere was calculated. Results suggest a Goldilocks effect with respect to the spectral detection of ozone. At weak UV levels, the ozone column was weak (due to weaker production from the Chapman mechanism) hence its spectral detection was challenging. At strong UV levels, ozone formation is stronger but its associated stratospheric heating leads to a weakening in temperature gradients between the stratosphere and troposphere, which results in weakened spectral bands. Also, increased UV levels can lead to enhanced abundances of hydrogen oxides which oppose the ozone formation effect. At intermediate UV (i.e. with x10 the stellar UV radiative flux of black body Planck curves corresponding to spectral class M7) the conditions are just right for spectral detection. Results suggest that the planetary O3 profile is sensitive to the UV output of the star from about(200-350) nm. We also investigated the effect of increasing the top-of-atmosphere incoming Lyman-alpha radiation but this had only a minimal effect on the biosignatures since it was efficiently absorbed in the uppermost planetary atmospheric layer, mainly by abundant methane. Earlier studies have suggested that the planetary methane is an important stratospheric heater which critically affects the vertical temperature gradient, hence the strength of spectral emission bands.
Anglada-Escude and Tuomi question the statistical rigor of our analysis while ignoring the stellar activity aspects that we present. Although we agree that improvements in multiparametric radial velocity (RV) modeling are necessary for the detection of Earth-mass planets, the key physical points we raised were not challenged. We maintain that activity on Gliese 581 induces RV shifts that were interpreted as exoplanets.
The M dwarf Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the H-alpha line, we measure a stellar rotation period of 130+/-2 days and a correlation for H-alpha modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 sigma), while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres (refs 3-6). Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones (refs 6-8). An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures (ref 9). However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere (refs 10,11). Here, we report observations for the four planets within or near the systems habitable zone, the circumstellar region where liquid water could exist on a planetary surface (refs 12-14). These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8, 6 and 4 sigma, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation (refs 15,16), these observations further support their terrestrial and potentially habitable nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا