Chemical doping and high pressure studies of layered beta-PdBi2 single crystals


Abstract in English

We have systematically grown large single crystals of layered compound beta-PdBi2, both the hole-doped PdBi2-xPbx and the electron-doped NaxPdBi2, and studied their magnetic and transport properties. Hall-effect measurement on PdBi2, PdBi1.8Pb0.2, and Na0.057PdBi2 shows that the charge transport is dominated by electrons in all of the samples. The electron concentration is substantially reduced upon Pb-doping in PdBi2-xPbx and increased upon Na-intercalation in NaxPdBi2, indicating the effective hole-doping by Pb and electron-doping by Na. We observed a monotonic decrease of superconducting transition temperature (Tc) from 5.4K in undoped PdBi2 to less than 2K for x > 0.35 in hole-doped PdBi2-xPbx. Meanwhile, a rapid decrease of Tc with the Na intercalation is also observed in the electron-doped NaxPdBi2, which is in disagreement with the theoretical expectation. In addition, both the magnetoresistance and Hall resistance further reveal evidence for a possible spin density wave (SDW)-like transition below 50K in the Na-intercalated PdBi2 sample. The complete phase diagram is thus established from hole-doping to electron-doping. Meanwhile, high pressure study of the undoped PdBi2 shows that the Tc is linearly suppressed under pressure with a dTc/dP coefficient of -0.28K/GPa.

Download