Do you want to publish a course? Click here

Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1

116   0   0.0 ( 0 )
 Added by Paolo Esposito Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The examination of two 2010 Chandra ACIS exposures of the Circinus galaxy resulted in the discovery of two pulsators: CXO J141430.1-651621 and CXOU J141332.9-651756. We also detected 26-ks pulsations in CG X-1, consistently with previous measures. For ~40 other sources, we obtained limits on periodic modulations. In CXO J141430.1-651621, which is ~2 arcmin outside the Circinus galaxy, we detected signals at 6120(1) s and 64.2(5) ks. In the longest observation, the source showed a flux of ~1.1e-13 erg/cm^2/s (absorbed, 0.5-10 keV) and the spectrum could be described by a power-law with photon index ~1.4. From archival observations, we found that the luminosity is variable by ~50 per cent on time-scales of weeks-years. The two periodicities pin down CXO J141430.1-651621 as a cataclysmic variable of the intermediate polar subtype. The period of CXOU J141332.9-651756 is 6378(3) s. It is located inside the Circinus galaxy, but the low absorption indicates a Galactic foreground object. The flux was ~5e-14 erg/cm^2/s in the Chandra observations and showed ~50 per cent variations on weekly/yearly scales; the spectrum is well fit by a power law ~0.9. These characteristics and the large modulation suggest that CXOU J141332.9-651756 is a magnetic cataclysmic variable, probably a polar. For CG X-1, we show that if the source is in the Circinus galaxy, its properties are consistent with a Wolf-Rayet plus black hole binary. We consider the implications of this for ultraluminous X-ray sources and the prospects of Advanced LIGO and Virgo. In particular, from the current sample of WR-BH systems we estimate an upper limit to the detection rate of stellar BH-BH mergers of ~16 events per yr.



rate research

Read More

In order to elucidate the emission properties of ultraluminous X-ray sources (ULXs) during their power-law (PL) state, we examined long-term X-ray spectral data of IC342 X-1 during its PL state by using our own Suzaku data and the archival data by XMM-Newton, Chandra, and Swift observations. The PL state of this source seems to be classified into two sub-states in terms of the X-ray luminosities in 0.5-10 keV: the low luminosity PL state with 4-6*10^{39} erg/s and the high luminosity one with 1.1-1.4*10^{40} erg/s. During the Suzaku observations which were made in 2010 August and 2011 March, X-1 stayed in the low luminosity PL state. The observed X-ray luminosity (4.9-5.6*10^{39} erg/s) and the spectral shape (photon index = 1.67-1.83) slightly changed between the two observations. Using the Suzaku PIN detector, we for the first time confirmed a PL tail extending up to at least 20 keV with no signatures of a high-energy turnover in both of the Suzaku observations. In contrast, a turnover at about 6 keV was observed during the high luminosity PL state in 2004 and 2005 with XMM-Newton. Importantly, photon indices are similar between the two PL states and so is the Compton y-parameters of y ~ 1, which indicates a similar energy balance (between the corona and the accretion disk) holding in the two PL states despite different electron temperatures. From spectral similarities with recent studies about other ULXs and the Galactic black hole binary GRS1915+105, IC342 X-1 is also likely to be in a state with a supercritical accretion rate, although more sensitive higher energy observations would be necessary to conclude.
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferentially occurs on $sim 5$ ks and $sim 10$ ks timescales. The dips can be caused by either the occultation of the central X-ray source by an optically thick structure, such as warping of the accretion disc, or from obscuration by a wind launched from the accretion disc, or both. This behaviour supports the idea that supersoft ULXs are viewed close to edge-on to the accretion disc.
We use XMM-Newton and Swift data to study spectral variability in the ultraluminous X-ray source (ULX), Holmberg IX X-1. The source luminosity varies by a factor 3-4, giving rise to corresponding spectral changes which are significant, but subtle, and not well tracked by a simple hardness ratio. Instead, we co-add the Swift data in intensity bins and do full spectral fitting with disc plus thermal Comptonisation models. All the data are well-fitted by a low temperature, optically thick Comptonising corona, and the variability can be roughly characterised by decreasing temperature and increasing optical depth as the source becomes brighter, as expected if the corona is becoming progressively mass loaded by material blown off the super-Eddington inner disc. This variability behaviour is seen in other ULX which have similar spectra, but is opposite to the trend seen in ULX with much softer spectra. This supports the idea that there are two distinct physical regimes in ULXs, where the spectra go from being dominated by a disc-corona to being dominated by a wind.
Among hard X-ray Galactic sources detected in the Swift and INTEGRAL surveys, those discovered as accreting white dwarf binaries have suprisingly boosted in number in the recent years. The majority are identified as magnetic Cataclysmic Variables of the Intermediate Polar type, suggesting this subclass as an important constituent of the Galactic population of X-ray sources. We here review and discuss the X-ray emission properties of newly discovered sources in the framework of an identification programme with the XMM-Newton satellite that increased the sample of this subclass by a factor of two.
Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultra-luminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with Lx > 1e40 erg/s). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ~10 Msun, or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive dataset in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the >150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime, and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind, and that Holmberg IX X-1 must primarily accrete via roche-lobe overflow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا