Do you want to publish a course? Click here

Deviation from the Fourier law in room-temperature heat pulse experiments

89   0   0.0 ( 0 )
 Added by Peter Van
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report heat pulse experiments at room temperature that cannot be described by Fouriers law. The experimental data is modelled properly by the Guyer--Krumhansl equation, in its over-diffusion regime. The phenomenon is due to conduction channels with differing conductivities, and parallel to the direction of the heat flux.



rate research

Read More

For an one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long, slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our study is illustrated by the 1D diatomic gas model, with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.
We analyze the transport of heat along a chain of particles interacting through anharmonic po- tentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the en- ergy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier law. The behavior of thels heat conductivity for small intensities of the shot noise and large system sizes are found to obey a finite-size scaling relation. We also show that the heat conductivity is not constant but is an increasing monotonic function of temperature.
61 - Giulio Casati , Baowen LI 2005
In this paper we give a brief review of the relation between microscopic dynamical properties and the Fourier law of heat conduction as well as the connection between anomalous conduction and anomalous diffusion. We then discuss the possibility to control the heat flow.
56 - Aakash , A. Bhattacharyay 2021
We consider the surface-induced ratcheting transport of particles in nano-channels, particularly at room temperature. We show that at room temperature it is possible to achieve ratcheting of about 10 nm size particles in a nano-channel of about 100 nm width. The typical ratcheting velocity in such a case could be of the order of a few hundred nano-meter when the surface undulations are of a wavelength of a few hundred nano-meter and of the amplitude of a few tens of nano-meter. At room temperature, the viscosity of the fluid enabling such transport in the nano-channels comes out to be that of water. We show here a considerably large effect under realistic conditions which could be used for application in efficient filtration of particles and probably are in use in biological systems which typically work at room temperature.
111 - Q. Zhai , I. Paga , M. Baity-Jesi 2020
The correlation length $xi$, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to the glass temperature. We solve this problem by introducing a scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation length. The scaling law is successfully tested against experimental measurements in a CuMn single crystal and against large-scale simulations on the Janus II dedicated computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا