Tribology of thin wetting films between a bubble and a moving solid surface


Abstract in English

The tribology of a bubble rubbing on a solid surface is studied via interferometry. A unique experimental setup is designed for monitoring the thickness profiles of a wetting film, intercalated between the bubble and hydrophilic glass moving with speed up to 412 um/s. The determination of the 3D film thickness profiles allows us to calculate 3D maps over the wetted surface of the local capillary, disjoining and lift pressures, viscous stress and friction force. In this way the average friction force and the corresponding friction coefficient are obtained. A theoretical model for the dependence of the friction coefficient on the film thickness is developed. The relevant slip coefficient, being a measure for the slip between liquid and solid, is determined as a function of the speed of the solid surface. It is found out that below 170 um/s a friction regime exists which formally resembles dry friction, while at larger speed the friction force between the bubble and solid passes through a maximum. Furthermore, the friction coefficient has a large value at low speed of the solid and reduces substantially with the speed increase.

Download