Do you want to publish a course? Click here

Efficient $ell_q$ Minimization Algorithms for Compressive Sensing Based on Proximity Operator

185   0   0.0 ( 0 )
 Added by Fei Wen
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

This paper considers solving the unconstrained $ell_q$-norm ($0leq q<1$) regularized least squares ($ell_q$-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex $ell_q$-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers (ADMM) frameworks, respectively. Furthermore, in solving the nonconvex $ell_q$-LS problem, a sequential minimization strategy is adopted in the new algorithms to gain better global convergence performance. Unlike most existing $ell_q$-minimization algorithms, the new algorithms solve the $ell_q$-minimization problem without smoothing (approximating) the $ell_q$-norm. Meanwhile, the new algorithms scale well for large-scale problems, as often encountered in image processing. We show that the proposed algorithms are the fastest methods in solving the nonconvex $ell_q$-minimization problem, while offering competent performance in recovering sparse signals and compressible images compared with several state-of-the-art algorithms.



rate research

Read More

117 - Xin Yuan 2015
We consider the total variation (TV) minimization problem used for compressive sensing and solve it using the generalized alternating projection (GAP) algorithm. Extensive results demonstrate the high performance of proposed algorithm on compressive sensing, including two dimensional images, hyperspectral images and videos. We further derive the Alternating Direction Method of Multipliers (ADMM) framework with TV minimization for video and hyperspectral image compressive sensing under the CACTI and CASSI framework, respectively. Connections between GAP and ADMM are also provided.
The fundamental problem considered in this paper is What is the textit{energy} consumed for the implementation of a emph{compressive sensing} decoding algorithm on a circuit?. Using the information-friction framework, we examine the smallest amount of textit{bit-meters} as a measure for the energy consumed by a circuit. We derive a fundamental lower bound for the implementation of compressive sensing decoding algorithms on a circuit. In the setting where the number of measurements scales linearly with the sparsity and the sparsity is sub-linear with the length of the signal, we show that the textit{bit-meters} consumption for these algorithms is order-tight, i.e., it matches the lower bound asymptotically up to a constant factor. Our implementations yield interesting insights into design of energy-efficient circuits that are not captured by the notion of computational efficiency alone.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
Recently, it was observed that spatially-coupled LDPC code ensembles approach the Shannon capacity for a class of binary-input memoryless symmetric (BMS) channels. The fundamental reason for this was attributed to a threshold saturation phenomena derived by Kudekar, Richardson and Urbanke. In particular, it was shown that the belief propagation (BP) threshold of the spatially coupled codes is equal to the maximum a posteriori (MAP) decoding threshold of the underlying constituent codes. In this sense, the BP threshold is saturated to its maximum value. Moreover, it has been empirically observed that the same phenomena also occurs when transmitting over more general classes of BMS channels. In this paper, we show that the effect of spatial coupling is not restricted to the realm of channel coding. The effect of coupling also manifests itself in compressed sensing. Specifically, we show that spatially-coupled measurement matrices have an improved sparsity to sampling threshold for reconstruction algorithms based on verification decoding. For BP-based reconstruction algorithms, this phenomenon is also tested empirically via simulation. At the block lengths accessible via simulation, the effect is quite small and it seems that spatial coupling is not providing the gains one might expect. Based on the threshold analysis, however, we believe this warrants further study.
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear observations. Despite the steady progress in the field of compressed sensing, structures that are often used for signal recovery are still much simpler than those employed by state-of-the-art compression codes. The main goal of this paper is to bridge this gap through answering the following question: Can one employ a given compression code to build an efficient (polynomial time) compressed sensing recovery algorithm? In response to this question, the compression-based gradient descent (C-GD) algorithm is proposed. C-GD, which is a low-complexity iterative algorithm, is able to employ a generic compression code for compressed sensing and therefore elevates the scope of structures used in compressed sensing to those used by compression codes. The convergence performance of C-GD and its required number of measurements in terms of the rate-distortion performance of the compression code are theoretically analyzed. It is also shown that C-GD is robust to additive white Gaussian noise. Finally, the presented simulation results show that combining C-GD with commercial image compression codes such as JPEG2000 yields state-of-the-art performance in imaging applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا