Do you want to publish a course? Click here

Effects from Additional Random Configuration to Linear Response and Modified Fluctuation-Dissipation Relation

102   0   0.0 ( 0 )
 Added by Fattah Sakuldee
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, a physical system described by Hamiltonian $mathbf{H}_omega = mathbf{H}_0 + mathbf{V}_omega(mathbf{x},t)$ consisted of a solvable model $mathbf{H}$ and external random and time-dependent potential $mathbf{V}_omega(mathbf{x},t)$ is investigated. Under the conditions that the average external potential with respect to the configuration $omega$ is constant in time, and, for each configuration, the potential changes smoothly that the evolution of the system follows Schrodinger dynamics, the mean-dynamics can be derived from taking average of the equation with respect to configuration parameter $omega$. It provides extra contributions from the deviations of the Hamiltonian and evolved state along the time to the Heisenberg and Liouville-von Neumann equations. Consequently, the Kubos formula and the fluctuation-dissipation relation obtained from the construction is modified in the sense that the contribution from the information of randomness and memory effect from time-dependence are present.



rate research

Read More

We show a direct connection between Kubos fluctuation-dissipation relation and Hawking effect that is valid in any dimensions for any stationary or static black hole. The relevant correlators corresponding to the fluctuating part of the force, computed from the known expressions for the anomalous stress tensor related to gravitational anomalies, are shown to satisfy the Kubo relation, from which the temperature of a black hole as seen by an observer at an arbitrary distance is abstracted. This reproduces the Tolman temperature and hence the Hawking temperature as that measured by an observer at infinity.
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the model of two-oscillators (considered as a short harmonic chain with the two ends) each connected to a thermal bath of different temperatures we find that when the chain is fully relaxed due to interaction with the baths, the relation that connects the noise kernel and the imaginary part of the dissipation kernel of the chain in one bath does not assume the conventional form for the FDR in equilibrium cases. There exists an additional term we call the `bias current that depends on the difference of the baths initial temperatures and the inter-oscillator coupling strength. We further show that this term is related to the steady heat flow between the two baths when the system is in NESS. The ability to know the real-time development of the inter-heat exchange (between the baths and the end-oscillators) and the intra-heat transfer (within the chain) and their dependence on the parameters in the system offers possibilities for quantifiable control and in the design of quantum heat engines or thermal devices.
In this paper we study the nonequilibrium evolution of a quantum Brownian oscillator, modeling the internal degree of freedom of a harmonic atom or an Unruh-DeWitt detector, coupled to a nonequilibrium, nonstationary quantum field and inquire whether a fluctuation-dissipation relation can exist after/if it approaches equilibration. This is a nontrivial issue since a squeezed bath field cannot reach equilibration and yet, as this work shows, the system oscillator indeed can, which is a necessary condition for FDRs. We discuss three different settings: A) The bath field essentially remains in a squeezed thermal state throughout, whose squeeze parameter is a mode- and time-independent constant. This situation is often encountered in quantum optics and quantum thermodynamics. B) The field is initially in a thermal state, but subjected to a parametric process leading to mode- and time-dependent squeezing. This scenario is met in cosmology and dynamical Casimir effect. The squeezing in the bath in both types of processes will affect the oscillators nonequilibrium evolution. We show that at late times it approaches equilibration, which warrants the existence of an FDR. The trait of squeezing is marked by the oscillators effective equilibrium temperature, and the factor in the FDR is only related to the stationary component of baths noise kernel. Setting C) is more subtle: A finite system-bath coupling strength can set the oscillator in a squeezed state even the bath field is stationary and does not engage in any parametric process. The squeezing of the system in this case is in general time-dependent but becomes constant when the internal dynamics is fully relaxed. We begin with comments on the broad range of physical processes involving squeezed thermal baths and end with some remarks on the significance of FDRs in capturing the essence of quantum backreaction in nonequilibrium systems.
The fluctuation-dissipation theorem (FDT) is a simple yet powerful consequence of the first-order differential equation governing the dynamics of systems subject simultaneously to dissipative and stochastic forces. The linear learning dynamics, in which the input vector maps to the output vector by a linear matrix whose elements are the subject of learning, has a stochastic version closely mimicking the Langevin dynamics when a full-batch gradient descent scheme is replaced by that of stochastic gradient descent. We derive a generalized FDT for the stochastic linear learning dynamics and verify its validity among the well-known machine learning data sets such as MNIST, CIFAR-10 and EMNIST.
Universal phenomena far from equilibrium exhibit additional independent scaling exponents and functions as compared to thermal universal behavior. For the example of an ultracold Bose gas we simulate nonequilibrium transport processes in a universal scaling regime and show how they lead to the breaking of the fluctuation-dissipation relation. As a consequence, the scaling of spectral functions (commutators) and statistical correlations (anticommutators) between different points in time and space become linearly independent with distinct dynamic scaling exponents. As a macroscopic signature of this phenomenon we identify a transport peak in the statistical two-point correlator, which is absent in the spectral function showing the quasiparticle peaks of the Bose gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا