Do you want to publish a course? Click here

Parenclitic network analysis of methylation data for cancer identification

177   0   0.0 ( 0 )
 Publication date 2015
  fields Biology
and research's language is English




Ask ChatGPT about the research

We make use of ideas from the theory of complex networks to implement a machine learning classification of human DNA methylation data, that carry signatures of cancer development. The data were obtained from patients with various kinds of cancers and represented as parenclictic networks, wherein nodes correspond to genes, and edges are weighted according to pairwise variation from control group subjects. We demonstrate that for the $10$ types of cancer under study, it is possible to obtain a high performance of binary classification between cancer-positive and negative samples based on network measures. Remarkably, an accuracy as high as $93-99%$ is achieved with only $12$ network topology indices, in a dramatic reduction of complexity from the original $15295$ gene methylation levels. Moreover, it was found that the parenclictic networks are scale-free in cancer-negative subjects, and deviate from the power-law node degree distribution in cancer. The node centrality ranking and arising modular structure could provide insights into the systems biology of cancer.



rate research

Read More

Identifying subgroups and properties of cancer biopsy samples is a crucial step towards obtaining precise diagnoses and being able to perform personalized treatment of cancer patients. Recent data collections provide a comprehensive characterization of cancer cell data, including genetic data on copy number alterations (CNAs). We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach that encodes each cancer sample as a persistence diagram of topological features, i.e., high-dimensional voids represented in the data. We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data and demonstrate the viability of some applications on finding substructures in cancer data as well as comparing similarity of cancer types.
Motivation: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the methylation states of cytosines on any given read forms a methylation pattern that carries substantially more information than merely studying the average methylation level at individual positions. In order to understand better the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors and spurious signals due to incomplete bisulphite conversion of cytosines. Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of the true underlying distribution of methylation patterns. Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R Bioconductor package MPFE. Source code and documentation of the package are also available for download at http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.
The understanding of mechanisms that control epigenetic changes is an important research area in modern functional biology. Epigenetic modifications such as DNA methylation are in general very stable over many cell divisions. DNA methylation can however be subject to specific and fast changes over a short time scale even in non-dividing (i.e. not-replicating) cells. Such dynamic DNA methylation changes are caused by a combination of active demethylation and de novo methylation processes which have not been investigated in integrated models. Here we present a hybrid (hidden) Markov model to describe the cycle of methylation and demethylation over (short) time scales. Our hybrid model decribes several molecular events either happening at deterministic points (i.e. describing mechanisms that occur only during cell division) and other events occurring at random time points. We test our model on mouse embryonic stem cells using time-resolved data. We predict methylation changes and estimate the efficiencies of the different modification steps related to DNA methylation and demethylation.
DNA methylation is an epigenetic mechanism whose important role in development has been widely recognized. This epigenetic modification results in heritable changes in gene expression not encoded by the DNA sequence. The underlying mechanisms controlling DNA methylation are only partly understood and recently different mechanistic models of enzyme activities responsible for DNA methylation have been proposed. Here we extend existing Hidden Markov Models (HMMs) for DNA methylation by describing the occurrence of spatial methylation patterns over time and propose several models with different neighborhood dependencies. We perform numerical analysis of the HMMs applied to bisulfite sequencing measurements and accurately predict wild-type data. In addition, we find evidence that the enzymes activities depend on the left 5 neighborhood but not on the right 3 neighborhood.
Background: Recent assays for individual-specific genome-wide DNA methylation profiles have enabled epigenome-wide association studies to identify specific CpG sites associated with a phenotype. Computational prediction of CpG site-specific methylation levels is important, but current approaches tackle average methylation within a genomic locus and are often limited to specific genomic regions. Results: We characterize genome-wide DNA methylation patterns, and show that correlation among CpG sites decays rapidly, making predictions solely based on neighboring sites challenging. We built a random forest classifier to predict CpG site methylation levels using as features neighboring CpG site methylation levels and genomic distance, and co-localization with coding regions, CGIs, and regulatory elements from the ENCODE project, among others. Our approach achieves 91% -- 94% prediction accuracy of genome-wide methylation levels at single CpG site precision. The accuracy increases to 98% when restricted to CpG sites within CGIs. Our classifier outperforms state-of-the-art methylation classifiers and identifies features that contribute to prediction accuracy: neighboring CpG site methylation status, CpG island status, co-localized DNase I hypersensitive sites, and specific transcription factor binding sites were found to be most predictive of methylation levels. Conclusions: Our observations of DNA methylation patterns led us to develop a classifier to predict site-specific methylation levels that achieves the best DNA methylation predictive accuracy to date. Furthermore, our method identified genomic features that interact with DNA methylation, elucidating mechanisms involved in DNA methylation modification and regulation, and linking different epigenetic processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا