Do you want to publish a course? Click here

Weak-lensing-inferred scaling relations of galaxy clusters in the RCS2: mass-richness, mass-concentration, mass-bias, and more

138   0   0.0 ( 0 )
 Added by Edo van Uitert
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a sample of ~10^4 galaxy clusters in the redshift range 0.2<z<0.8 with masses M_200 > 5x10^13 h_70^-1 M_sun, discovered in the second Red-sequence Cluster Survey (RCS2). The depth and excellent image quality of the RCS2 enable us to detect the cluster-mass cross-correlation up to z~0.7. To obtain cluster masses, concentrations and halo biases, we fit a cluster halo model simultaneously to the lensing signal and to the projected density profile of red-sequence cluster members, as the latter provides tight constraints on the cluster miscentring distribution. We parametrise the mass-richness relation as M_200 = A x (N_200/20)^alpha, and find A = (15.0 +- 0.8) x 10^13 h_70^-1 M_sun and alpha = 0.73 +- 0.07 at low redshift (0.2<z<0.35). At intermediate redshift (0.35<z<0.55), we find a higher normalisation, which points at a fractional increase of the richness towards lower redshift caused by the build-up of the red-sequence. The miscentring distribution is well constrained. Only ~30% of our BCGs coincide with the peak of the dark matter distribution. The distribution of the remaining BCGs are modelled with a 2D-Gaussian, whose width increases from 0.2 to 0.4 h_70^-1 Mpc towards higher masses; the ratio of width and r_200 is constant with mass and has an average value of 0.44 +- 0.01. The mass-concentration and mass-bias relation agree fairly well with literature results at low redshift, but have a higher normalisation at higher redshifts, which may be due to selection and projection effects. The concentration of the satellite distribution decreases with mass and is correlated with the concentration of the halo.



rate research

Read More

141 - Yannick M. Bahe 2011
(Abridged) We quantify the bias and scatter in galaxy cluster masses and concentrations derived from an idealised mock weak gravitational lensing (WL) survey, and their effect on the cluster mass-concentration relation. For this, we simulate WL distortions on a population of background galaxies due to a large (~3000) sample of galaxy cluster haloes extracted from the Millennium Simulation at z~0.2. This study takes into account the influence of shape noise, cluster substructure and asphericity as well as correlated large-scale structure, but not uncorrelated large-scale structure along the line of sight and observational effects. We find a small, but non-negligble, negative median bias in both mass and concentration at a level of ~5%, the exact value depending both on cluster mass and radial survey range. Both the mass and concentration derived from WL show considerable scatter about their true values. This scatter has, even for the highest mass clusters of M200 > 10^14.8 M_sun, a level of ~30% and ~20% for concentration and mass respectively and increases strongly with decreasing cluster mass. For a typical survey analysing 30 galaxies per arcmin^2 over a radial range from 30 to 15 from the cluster centre, the derived M200-c relation has a slope and normalisation too low compared to the underlying true (3D) relation by ~40% and ~15% respectively. The scatter and bias in mass are shown to reflect a departure at large radii of the true WL shear/matter distribution of the simulated clusters from the NFW profile adopted in modelling the mock observations. Orientation of the triaxial cluster haloes dominates the concentration scatter (except at low masses, where galaxy shape noise becomes dominant), while the bias in c is mostly due to substructure within the virial radius.
The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 < z < 0.65$. It was selected from ROSAT data in the 10,000 square degrees of overlap with BOSS, mapping a total number of 2770 high-z galaxy clusters. We present here the full results of the CFHT CODEX program on cluster mass measurement, including a reanalysis of CFHTLS Wide data, with 25 individual lensing-constrained cluster masses. We employ $lensfit$ shape measurement and perform a conservative colour-space selection and weighting of background galaxies. Using the combination of shape noise and an analytic covariance for intrinsic variations of cluster profiles at fixed mass due to large scale structure, miscentring, and variations in concentration and ellipticity, we determine the likelihood of the observed shear signal as a function of true mass for each cluster. We combine 25 individual cluster mass likelihoods in a Bayesian hierarchical scheme with the inclusion of optical and X-ray selection functions to derive constraints on the slope $alpha$, normalization $beta$, and scatter $sigma_{ln lambda | mu}$ of our richness-mass scaling relation model in log-space: $left<ln lambda | mu right> = alpha mu + beta$, with $mu = ln (M_{200c}/M_{mathrm{piv}})$, and $M_{mathrm{piv}} = 10^{14.81} M_{odot}$. We find a slope $alpha = 0.49^{+0.20}_{-0.15}$, normalization $ exp(beta) = 84.0^{+9.2}_{-14.8}$ and $sigma_{ln lambda | mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sunyaev-Zeldovich, and optical).
157 - Christian Arnold 2013
We investigate the impact of chameleon-type f(R) gravity models on the properties of galaxy clusters and groups. Our f(R) simulations follow for the first time also the hydrodynamics of the intracluster and intragroup medium. This allows us to assess how f(R) gravity alters the X-ray scaling relations of clusters and how hydrostatic and dynamical mass estimates are biased when modifications of gravity are ignored in their determination. We find that velocity dispersions and intracluster medium temperatures are both increased by up to 1/3 in f(R) gravity in low-mass halos, while the difference disappears in massive objects. The mass scale of the transition depends on the background value f_R0 of the scalar degree of freedom. These changes in temperature and velocity dispersion alter the mass-temperature and X-ray luminosity-temperature scaling relations and bias dynamical and hydrostatic mass estimates that do not explicitly account for modified gravity towards higher values. Recently, a relative enhancement of X-ray compared to weak lensing masses was found by the Planck Collaboration (2013). We demonstrate that an explanation for this offset may be provided by modified gravity and the associated bias effects, which interestingly are of the required size. Finally, we find that the abundance of subhalos at fixed cluster mass is only weakly affected by f(R) gravity.
We present the first scaling relation between weak-lensing galaxy cluster mass, $M_{WL}$, and near-infrared luminosity, $L_K$. Our results are based on 17 clusters observed with wide-field instruments on Subaru, the United Kingdom Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the relation between projected 2D weak-lensing mass and spectroscopically confirmed luminosity within 1Mpc, modelled as $M_{WL} propto L_{K}^b$, obtaining a power law slope of $b=0.83^{+0.27}_{-0.24}$ and an intrinsic scatter of $sigma_{lnM_{WL}|L_{K}}=10^{+8}_{-5}%$. Intrinsic scatter of ~10% is a consistent feature of our results regardless of how we modify our approach to measuring the relationship between mass and light. For example, deprojecting the mass and measuring both quantities within $r_{500}$, that is itself obtained from the lensing analysis, yields $sigma_{lnM_{WL}|L_{K}}=10^{+7}_{-5}%$ and $b=0.97^{+0.17}_{-0.17}$. We also find that selecting members based on their (J-K) colours instead of spectroscopic redshifts neither increases the scatter nor modifies the slope. Overall our results indicate that near-infrared luminosity measured on scales comparable with $r_{500}$ (typically 1Mpc for our sample) is a low scatter and relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity may therefore be a useful mass proxy for cluster cosmology experiments.
We constrain the scaling relation between optical richness ($lambda$) and halo mass ($M$) for a sample of SDSS redMaPPer galaxy clusters within the context of the {it Planck} cosmological model. We use a forward modeling approach where we model the probability distribution of optical richness for a given mass, $P(ln lambda| M)$. To model the abundance and the stacked lensing profiles, we use an emulator specifically built to interpolate the halo mass function and the stacked lensing profile for an arbitrary set of halo mass and redshift, which is calibrated based on a suite of high-resolution $N$-body simulations. We apply our method to 8,312 SDSS redMaPPer clusters with $20le lambda le 100$ and $0.10le z_{lambda}le0.33$, and show that the log-normal distribution model for $P(lambda|M)$, with four free parameters, well reproduces the measured abundances and lensing profiles simultaneously. The constraints are characterized by the mean relation, $leftlangle ln{lambda}rightrangle(M)=A+Bln(M/M_{rm pivot})$, with $A=3.207^{+0.044}_{-0.046}$ and $B=0.993^{+0.041}_{-0.055}$ (68%~CL), where the pivot mass scale $M_{rm pivot}=3times 10^{14} h^{-1}M_odot$, and the scatter $sigma_{mathrm{lnlambda}|M}=sigma_0+qln(M/M_{rm pivot})$ with $sigma_0=0.456^{+0.047}_{-0.039}$ and $q=-0.169^{+0.035}_{-0.026}$. We find that a large scatter in halo masses is required at the lowest richness bins ($20le lambda lesssim 30$) in order to reproduce the measurements. Without such a large scatter, the model prediction for the lensing profiles tends to overestimate the measured amplitudes. This might imply a possible contamination of intrinsically low-richness clusters due to the projection effects. Such a low-mass halo contribution is significantly reduced when applying our method to the sample of $30le lambda le 100$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا