Do you want to publish a course? Click here

A new HW Vir binary from the Palomar Transient Factory: PTF1 J072455.75+125300.3 - An eclipsing subdwarf B binary with a M-star companion

165   0   0.0 ( 0 )
 Added by Markus Schindewolf
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of an eclipsing binary -- PTF1 J072456$+$125301-- composed of a subdwarf B (sdB) star ($g=17.2^m$) with a faint companion. Subdwarf B stars are core helium-burning stars, which can be found on the extreme horizontal branch. About half of them reside in close binary systems, but few are known to be eclipsing, for which fundamental stellar parameters can be derived. ewline We conducted an analysis of photometric data and spectra from the Palomar 60 and the 200 Hale telescope respectively. A quantitative spectral analysis found an effective temperature of $T_{text{eff}}=33900pm350$,K, log g = $5.74pm0.08$ and log($n_{text{He}}/n_{text{H}}) = -2.02 pm0.07$, typical for an sdB star. The companion does not contribute to the optical light of the system, except through a distinct reflection effect. From the light curve an orbital period of 0.09980(25),d and a system inclination of $83.56pm0.30,^{circ}$ were derived. The radial velocity curve yielded an orbital semi-amplitude of $K_1=95.8pm 8.1,text{km s$^{-1}$}$. The mass for the M-type dwarf companion is $0.155pm0.020,M_{odot}$. PTF1,J072456$+$125301 has similar atmospheric parameters to those of pulsating sdB stars (V346 Hya stars). Therefore it could be a high-priority object for asteroseismology, if pulsations were detected such as in the enigmatic case of NY Vir.



rate research

Read More

EPIC 216747137 is a new HW~Virginis system discovered by the Kepler spacecraft during its K2 second life. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mass companion. The short orbital period of 3.87 hours produces a strong reflection effect from the secondary (~9% in the R band). Together with AA Dor and V1828 Aql, EPIC 216747137 belongs to a small subgroup of HW Vir systems with a hot evolved sdOB primary. We find the following atmospheric parameters for the hot component: Teff=40400$pm$1000 K, logg=5.56$pm$0.06, log(N(He)/N(H))=$-$2.59$pm$0.05. The sdOB rotational velocity vsini=51$pm$10 km/s implies that the stellar rotation is slower than the orbital revolution and the system is not synchronized. When we combine photometric and spectroscopic results with the Gaia parallax, the best solution for the system corresponds to a primary with a mass of about 0.62 Msun close to, and likely beyond, the central helium exhaustion, while the cool M-dwarf companion has a mass of about 0.11 Msun.
A growing number of eclipsing binary systems of the HW Vir kind (i. e., composed by a subdwarf-B/O primary star and an M dwarf secondary) show variations in their orbital period, also called Eclipse Time Variations (ETVs). Their physical origin is not yet known with certainty: while some ETVs have been claimed to arise from dynamical perturbations due to the presence of circumbinary planetary companions, other authors suggest that the Applegate effect or other unknown stellar mechanisms could be responsible for them. In this work, we present twenty-eight unpublished high-precision light curves of one of the most controversial of these systems, the prototype HW Virginis. We homogeneously analysed the new eclipse timings together with historical data obtained between 1983 and 2012, demonstrating that the planetary models previously claimed do not fit the new photometric data, besides being dynamically unstable. In an effort to find a new model able to fit all the available data, we developed a new approach based on a global-search genetic algorithm and eventually found two new distinct families of solutions that fit the observed timings very well, yet dynamically unstable at the 10^5-year time scale. This serves as a cautionary tale on the existence of formal solutions that apparently explain ETVs but are not physically meaningful, and on the need of carefully testing their stability. On the other hand, our data confirm the presence of an ETV on HW Vir that known stellar mechanisms are unable to explain, pushing towards further observing and modelling efforts.
99 - Thomas Kupfer 2016
We present the discovery of the hot subdwarf B star (sdB) binary PTF1 J082340.04+081936.5. The system has an orbital period P$_{rm orb}=87.49668(1)$ min (0.060761584(10) days), making it the second-most compact sdB binary known. The lightcurve shows ellipsoidal variations. Under the assumption that the sdB primary is synchronized with the orbit, we find a mass $M_{rm sdB}=0.45^{+0.09}_{-0.07}$ M$_odot$, a companion white dwarf mass $M_{rm WD}=0.46^{+0.12}_{-0.09}$ M$_odot$ and a mass ratio $q = frac{M_{rm WD}}{M_{rm sdB}}=1.03^{+0.10}_{-0.08}$. The future evolution was calculated using the MESA stellar evolution code. Adopting a canonical sdB mass of $M_{rm sdB}=0.47$ M$_odot$, we find that the sdB still burns helium at the time it will fill its Roche lobe if the orbital period was less than 106 min at the exit from the last common envelope phase. For longer common envelope exit periods the sdB will have stopped burning helium and turned into a C/O white dwarf at the time of contact. Comparing the spectroscopically derived log(g) and $T_{rm eff}$ with our MESA models, we find that an sdB model with a hydrogen envelope mass of $5times10^{-4} M_odot$ matches the measurements at a post-common envelope age of 94 Myr, corresponding to a post-common envelope orbital period of 109 min which is close to the limit to start accretion while the sdB is still burning helium.
The formation of subdwarf B (sdB) stars is not well understood within the current framework of stellar single and binary evolution. In this study, we focus on the formation and evolution of the pulsating sdB star in the very short-period eclipsing binary PG1336-018. We aim at refining the formation scenario of this unique system, so that it can be confronted with observations. We probe the stellar structure of the progenitors of sdB stars in short-period binaries using detailed stellar evolution calculations. Applying this to PG1336-018 we reconstruct the common-envelope phase during which the sdB star was formed. The results are interpreted in terms of the standard common-envelope formalism (the alpha-formalism) based on the energy equation, and an alternative description (the gamma-formalism) using the angular momentum equation. We find that if the common-envelope evolution is described by the alpha-formalism, the sdB progenitor most likely experienced a helium flash. We then expect the sdB mass to be between 0.39 and 0.48 Msun, and the sdB progenitor initial mass to be below ~2 Msun. However, the results for the gamma-formalism are less restrictive, and a broader sdB mass range (0.3 - 0.8 Msun) is possible in this case. Future seismic mass determination will give strong constraints on the formation of PG1336-018 and, in particular, on the CE phase.
Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ($simeq0.068,M_{rm odot}$) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا