Do you want to publish a course? Click here

Science with KRAKENS

129   0   0.0 ( 0 )
 Added by Benjamin Mazin
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Keck science community is entering an era of unprecedented change. Powerful new instrument like ZTF, JWST, LSST, and the ELTs will catalyze this change, and we must be ready to take full advantage to maintain our position of scientific leadership. The best way to do this is to continue the UC and Caltech tradition of technical excellence in instrumentation. In this whitepaper we describe a new instrument called KRAKENS to help meet these challenges. KRAKENS uses a unique detector technology (MKIDs) to enable groundbreaking science across a wide range of astrophysical research topics. This document will lay out the detailed expected science return of KRAKENS.



rate research

Read More

We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star and planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next decade. Building on the superb cm observing conditions and existing infrastructure of the VLA site in the U.S. Southwest, the ngVLA is envisaged to be an interferometric array with more than 10 times the sensitivity and spatial resolution of the current VLA and ALMA, operating at frequencies spanning $sim1.2 - 116$,GHz with extended baselines reaching across North America. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: (1) unveil the formation of Solar System analogues; (2) probe the initial conditions for planetary systems and life with astrochemistry; (3) characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; (4) use pulsars in the Galactic center as fundamental tests of gravity; and (5) understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.
131 - N. Sartore 2013
ASTRI (Astrofisica a Specchi con Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Instruction, University and Research and led by the Italian National Institute of Astrophysics. It represents the Italian proposal for the development of the Small Size Telescope system of the Cherenkov Telescope Array, the next generation observatory for Very High Energy gamma-rays (20 GeV - 100 TeV). The ASTRI end-to-end prototype will be installed at Serra La Nave (Catania, Italy) and it will see the first light at the beginning of 2014. We describe the expected performance of the prototype on few selected test cases of the northern emisphere. The aim of the prototype is to probe the technological solutions and the nominal performance of the various telescopes subsystems.
The SKA will be transformational for many areas of science, but in particular for the study of neutron stars and their usage as tools for fundamental physics in the form of radio pulsars. Since the last science case for the SKA, numerous and unexpected advances have been made broadening the science goals even further. With the design of SKA Phase 1 being finalised, it is time to confront the new knowledge in this field, with the prospects promised by this exciting new telescope. While technically challenging, we can build our expectations on recent discoveries and technical developments that have reinforced our previous science goals.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا