Do you want to publish a course? Click here

Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature --- Part II

170   0   0.0 ( 0 )
 Added by Richard H. Bamler
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we analyze the behavior of the distance function under Ricci flows whose scalar curvature is uniformly bounded. We will show that on small time-intervals the distance function is $frac12$-Holder continuous in a uniform sense. This implies that the distance function can be extended continuously up to the singular time.



rate research

Read More

99 - Richard H. Bamler 2016
In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. These results are based on a compactness theorem for Ricci flows with bounded scalar curvature, which states that any sequence of such Ricci flows converges, after passing to a subsequence, to a metric space that is smooth away from a set of codimension $geq 4$. In the course of the proof, we will also establish $L^{p < 2}$-curvature bounds on time-slices of such flows.
154 - Richard H. Bamler 2015
In this paper we prove a compactness result for Ricci flows with bounded scalar curvature and entropy. It states that given any sequence of such Ricci flows, we can pass to a subsequence that converges to a metric space which is smooth away from a set of codimension $geq 4$. The result has two main consequences: First, it implies that singularities in Ricci flows with bounded scalar curvature have codimension $geq 4$ and, second, it establishes a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. In the course of the proof, we will also establish the following results: $L^{p < 4}$ curvature bounds, integral bounds on the curvature radius, Gromov-Hausdorff closeness of time-slices, an $varepsilon$-regularity theorem for Ricci flows and an improved backwards pseudolocality theorem.
For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.
71 - Richard H Bamler 2020
In this paper we establish new geometric and analytic bounds for Ricci flows, which will form the basis of a compactness, partial regularity and structure theory for Ricci flows in [Bam20a, Bam20b]. The bounds are optimal up to a constant that only depends on the dimension and possibly a lower scalar curvature bound. In the special case in which the flow consists of Einstein metrics, these bounds agree with the optimal bounds for spaces with Ricci curvature bounded from below. Moreover, our bounds are local in the sense that if a bound depends on the collapsedness of the underlying flow, then we are able to quantify this dependence using the pointed Nash entropy based only at the point in question. Among other things, we will show the following bounds: Upper and lower volume bounds for distance balls, dependence of the pointed Nash entropy on its basepoint in space and time, pointwise upper Gaussian bound on the heat kernel and a bound on its derivative and an $L^1$-Poincare inequality. The proofs of these bounds will, in part, rely on a monotonicity formula for a notion, called variance of conjugate heat kernels. We will also derive estimates concerning the dependence of the pointed Nash entropy on its basepoint, which are asymptotically optimal. These will allow us to show that points in spacetime that are nearby in a certain sense have comparable pointed Nash entropy. Hence the pointed Nash entropy is a good quantity to measure local collapsedness of a Ricci flow Our results imply a local $varepsilon$-regularity theorem, improving a result of Hein and Naber. Some of our results also hold for super Ricci flows.
We employ three different methods to prove the following result on prescribed scalar curvature plus mean curvature problem: Let $(M^n,g_0)$ be a $n$-dimensional smooth compact manifold with boundary, where $n geq 3$, assume the conformal invariant $Y(M,partial M)<0$. Given any negative smooth functions $f$ in $M$ and $h$ on $partial M$, there exists a unique conformal metric of $g_0$ such that its scalar curvature equals $f$ and mean curvature curvature equals $h$. The first two methods are sub-super-solution method and subcritical approximation, and the third method is a geometric flow. In the flow approach, assume another conformal invariant $Q(M,pa M)$ is a negative real number, for some class of initial data, we prove the short time and long time existences of the so-called prescribed scalar curvature plus mean curvature flows, as well as their asymptotic convergence. Via a family of such flows together with some additional variational arguments, under the flow assumptions we prove existence and uniqueness of positive minimizers of the associated energy functional and also the above result by analyzing asymptotic limits of the flows and the relations among some conformal invariants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا