Do you want to publish a course? Click here

Measurement of the gravitational redshift effect with RadioAstron satellite

148   0   0.0 ( 0 )
 Added by Nataliya Porayko
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

RadioAstron satellite admits in principle a testing the gravitational redshift effect with an accuracy of better than $10^{-5}$. It would surpass the result of Gravity Probe A mission at least an order of magnitude. However, RadioAstrons communications and frequency transfer systems are not adapted for a direct application of the non relativistic Doppler and troposphere compensation scheme used in the Gravity Probe A experiment. This leads to degradation of the redshift test accuracy approximately to the level 0.01. We discuss the way to overcome this difficulty and present preliminary results based on data obtained during special observing sessions scheduled for testing the new techniques.



rate research

Read More

A test of a cornerstone of general relativity, the gravitational redshift effect, is currently being conducted with the RadioAstron spacecraft, which is on a highly eccentric orbit around Earth. Using ground radio telescopes to record the spacecraft signal, synchronized to its ultra-stable on-board H-maser, we can probe the varying flow of time on board with unprecedented accuracy. The observations performed so far, currently being analyzed, have already allowed us to measure the effect with a relative accuracy of $4times10^{-4}$. We expect to reach $2.5times10^{-5}$ with additional observations in 2016, an improvement of almost a magnitude over the 40-year old result of the GP-A mission.
We investigate the performance of the upcoming ACES (Atomic Clock Ensemble in Space) space mission in terms of its primary scientific objective, the test of the gravitational redshift. Whilst the ultimate performance of that test is determined by the systematic uncertainty of the on-board clock at 2-3 ppm, we determine whether, and under which conditions, that limit can be reached in the presence of colored realistic noise, data gaps and orbit determination uncertainties. To do so we have developed several methods and software tools to simulate and analyse ACES data. Using those we find that the target uncertainty of 2-3 ppm can be reached after only a few measurement sessions of 10-20 days each, with a relatively modest requirement on orbit determination of around 300 m.
It has been recently recognized that the observational relativistic effects, mainly arising from the light propagation in an inhomogeneous universe, induce the dipole asymmetry in the cross-correlation function of galaxies. In particular, the dipole asymmetry at small scales is shown to be dominated by the gravitational redshift effects. In this paper, we exploit a simple analytical description for the dipole asymmetry in the cross-correlation function valid at quasi-linear regime. In contrast to the previous model, a new prescription involves only one dimensional integrals, providing a faster way to reproduce the results obtained by Saga et al. (2020). Using the analytical model, we discuss the detectability of the dipole signal induced by the gravitational redshift effect from upcoming galaxy surveys. The gravitational redshift effect at small scales enhances the signal-to-noise ratio (S/N) of the dipole, and in most of the cases considered, the S/N is found to reach a maximum at $zapprox0.5$. We show that current and future surveys such as DESI and SKA provide an idealistic data set, giving a large S/N of $10sim 20$. Two potential systematics arising from off-centered galaxies are also discussed (transverse Doppler effect and diminution of the gravitational redshift effect), and their impacts are found to be mitigated by a partial cancellation between two competitive effects. Thus, the detection of the dipole signal at small scales is directly linked to the gravitational redshift effect, and should provide an alternative route to test gravity.
A unique test of general relativity is possible with the space radio telescope RadioAstron. The ultra-stable on-board hydrogen maser frequency standard and the highly eccentric orbit make RadioAstron an ideal instrument for probing the gravitational redshift effect. Large gravitational potential variation, occurring on the time scale of $sim$24 hr, causes large variation of the on-board H-maser clock rate, which can be detected via comparison with frequency standards installed at various ground radio astronomical observatories. The experiment requires specific on-board hardware operating modes and support from ground radio telescopes capable of tracking the spacecraft continuously and equipped with 8.4 or 15 GHz receivers. Our preliminary estimates show that $sim$30 hr of the space radio telescopes observational time are required to reach $sim 2times10^{-5}$ accuracy in the test, which would constitute a factor of 10 improvement over the currently achieved best result.
Advanced LIGO and the next generation of ground-based detectors aim to capture many more binary coalescences through improving sensitivity and duty cycle. Earthquakes have always been a limiting factor at low frequency where neither the pendulum suspension nor the active controls provide sufficient isolation to the test mass mirrors. Several control strategies have been proposed to reduce the impact of teleseismic events by switching to a robust configuration with less aggressive feedback. The continental United States has witnessed a huge increase in the number of induced earthquake events primarily associated with hydraulic fracking-related waste water re-injection. Effects from these differ from teleseismic earthquakes primarily because of their depth which is in turn linked to their triggering mechanism. In this paper, we discuss the impact caused due to these low magnitude regional earthquakes and explore ways to minimize the impact of induced seismicity on the detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا