On the relevance of q-distribution functions: The return time distribution of restricted random walker


Abstract in English

There exist a large literature on the application of $q$-statistics to the out-of-equilibrium non-ergodic systems in which some degree of strong correlations exists. Here we study the distribution of first return times to zero, $P_R(0,t)$, of a random walk on the set of integers ${0,1,2,...,L}$ with a position dependent transition probability given by $|n/L|^a$. We find that for all values of $ain[0,2]$ $P_R(0,t)$ can be fitted by $q$-exponentials, but only for $a=1$ is $P_R(0,t)$ given exactly by a $q$-exponential in the limit $Lrightarrowinfty$. This is a remarkable result since the exact analytical solution of the corresponding continuum model represents $P_R(0,t)$ as a sum of Bessel functions with a smooth dependence on $a$ from which we are unable to identify $a=1$ as of special significance. However, from the high precision numerical iteration of the discrete Master Equation, we do verify that only for $a=1$ is $P_R(0,t)$ exactly a $q$-exponential and that a tiny departure from this parameter value makes the distribution deviate from $q$-exponential. Further research is certainly required to identify the reason for this result and also the applicability of $q$-statistics and its domain.

Download