No Arabic abstract
The Trojan asteroids provide a unique perspective on the history of Solar System. As a large population of small bodies, they record important gravitational interactions and dynamical evolution of the Solar System. In the past decade, significant advances have been made in understanding physical properties, and there has been a revolution in thinking about the origin of Trojans. The ice and organics generally presumed to be a significant part of Trojan compositions have yet to be detected directly, though low density of the binary system Patroclus (and possibly low density of the binary/moonlet system Hektor) is consistent with an interior ice component. By contrast, fine-grained silicates that appear to be similar to cometary silicates in composition have been detected, and a color bimodality may indicate distinct compositional groups among the Trojans. Whereas Trojans had traditionally been thought to have formed near 5 AU, a new paradigm has developed in which the Trojans formed in the proto-Kuiper Belt, and they were scattered inward and captured in the Trojan swarms as a result of resonant interactions of the giant planets. Whereas the orbital and population distributions of current Trojans are consistent with this origin scenario, there are significant differences between current physical properties of Trojans and those of Kuiper Belt objects. These differences may be indicative of surface modification due to the inward migration of objects that became the Trojans, but understanding of appropriate modification mechanisms is poor and would benefit from additional laboratory studies. Many open questions remain, and the future promises significant strides in our understanding of Trojans. The time is ripe for a spacecraft mission to the Trojans, to turn these objects into geologic worlds that can be studied in detail to unravel their complex history.
Aims. We investigate the influence of the Yarkovsky force on the long-term orbital evolution of Jupiter Trojan asteroids. Methods. Clones of the observed population with different sizes and different thermal properties were numerically integrated for 1 Gyr with and without the Yarkovsky effect. The escape rate of these objects from the Trojan region as well as changes in the libration amplitude, eccentricity, and inclination were used as a metric of the strength of the Yarkovsky effect on the Trojan orbits. Results. Objects with radii $Rleq$1 km are significantly influenced by the Yarkovsky force. The effect causes a depletion of these objects over timescales of a few hundred million years. As a consequence, we expect the size-frequency distribution of small Trojans to show a shallower slope than that of the currently observable population ($R$ $gtrsim$ 1 km), with a turning point between $R$ = 100 m and $R$ = 1 km. The effect of the Yarkovsky acceleration on the orbits of Trojans depends on the sense of rotation in a complex way. The libration amplitude of prograde rotators decreases with time while the eccentricity increases. Retrograde rotators experience the opposite effect, which results in retrograde rotators being ejected faster from the 1:1 resonance region. Furthermore, for objects affected by the Yarkovsky force, we find indications that the effect tends to smooth out the differences in the orbital distribution between the two clouds.
We have used the XSHOOTER echelle spectrograph on the European Southern Obseratory (ESO) Very Large Telescope (VLT) to obtain UVB-VIS-NIR (ultraviolet-blue (UVB), visible (VIS) and near-infrared (NIR)) reflectance spectra of two members of the Eureka family of L5 Mars Trojans, in order to test a genetic relationship to Eureka. In addition to obtaining spectra, we also carried out VRI photometry of one of the VLT targets using the 2-m telescope at the Bulgarian National Astronomical Observatory - Rozhen and the two-channel focal reducer. We found that these asteroids belong to the olivine-dominated A, or Sa, taxonomic class. As Eureka itself is also an olivine-dominated asteroid, it is likely that all family asteroids share a common origin and composition. We discuss the significance of these results in terms of the origin of the martian Trojan population.
We present fully covered phased light curves for 56 Jovian Trojan asteroids as acquired by the K2 mission of the Kepler space telescope. This set of objects has been monitored during Campaign 6 and represents a nearly unbiased subsample of the population of small Solar System bodies. We derived precise periods and amplitudes for all Trojans, and found their distributions to be compatible with the previous statistics. We point out, however, that ground-based rotation periods are often unreliable above 20h, and we find an overabundance of rotation periods above 60h compared with other minor planet populations. From amplitude analysis we derive a rate of binarity of 20$pm$ 5%. Our spin rate distribution confirms the previously obtained spin barrier of ~5h and the corresponding ~0.5 g cm$^{-3}$ cometary-like density limit, also suggesting a high internal porosity for Jovian Trojans. One of our targets, asteroid 65227 exhibits a double rotation period, which can either be due to binarity or the outcome of a recent collision.
Jupiter has nearly 8000~known co-orbital asteroids orbiting in the L4 and L5 Lagrange points called Jupiter Trojan asteroids. Aside from the greater number density of the L4 cloud the two clouds are in many ways considered to be identical. Using sparse photometric data taken by the Asteroid Terrestrial-impact Last Alert System (ATLAS) for 863 L4 Trojans and 380 L5 Trojans we derive the shape distribution for each of the clouds and find that, on average, the L4 asteroids are more elongated than the L5 asteroids. This shape difference is most likely due to the greater collision rate in the L4 cloud that results from its larger population. We additionally present the phase functions and $c-o$ colours of 266~objects.
Most C-complex asteroids have albedo values less than 0.1, but there are some high-albedo (bright) C-complex asteroids with albedo values exceeding 0.1. To reveal the nature and origin of bright C-complex asteroids, we conducted spectroscopic observations of the asteroids in visible and near-infrared wavelength regions. As a result, the bright B-, C-, and Ch-type (Bus) asteroids, which are subclasses of the Bus C-complex, are classified as DeMeo C-type asteroids with concave curvature, B-, Xn-, and K-type asteroids. Analogue meteorites and material (CV/CK chondrites, enstatite chondrites/achondrites, and salts) associated with these spectral types of asteroids are thought to be composed of minerals and material exposed to high temperatures. A comparison of the results obtained in this study with the SDSS photometric data suggests that salts may have occurred in the parent bodies of 24 Themis and 10 Hygiea, as well as 2 Pallas. The bright C-complex asteroids in other C-complex families were likely caused by impact heating. Bright C-complex asteroids that do not belong to any families are likely to be impact metamorphosed carbonaceous chondrites, CV/CK chondrites, or enstatite chondrites/achondrites.