Computational investigation of the electronic and optical properties of planar Ga-doped Graphene


Abstract in English

We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simlutate the electronic band structure and show the effects of impurity doping (0-3.91%) in graphene on the electron density, refractive index, optical conductivity, and extinction coefficient for each doping percentages. Here, gallium atoms are placed randomly (using a 5-point average) throughout a 128-atom sheet of graphene. These calculations demonstrate the effects of hole doping due to direct atomic substitution, where it is found that a disruption in the electronic structure and electron density for small doping levels is due to impurity scattering of the electrons. However, the system continues to produce metallic or semi-metallic behavior with increasing doping levels. These calculations are compared to a purely theoretical 100% Ga sheet for comparison of conductivity. Furthermore, we examine the change in the electronic band structure, where the introduction of gallium electronic bands produces a shift in the electron bands and dissolves the characteristic Dirac cone within graphene, which leads to better electron mobility.

Download