No Arabic abstract
The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been investigated by comparing measured and calculated antiproton spectra. BESS-Polar II data show no evidence of primary antiprotons from evaporation of primordial black holes.
Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in the Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 GV-1.2 TV performed by the satellite-borne experiment PAMELA. We find that the spectral shapes of these two species are different and cannot be well described by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
We report cosmic-ray proton and helium spectra in energy ranges of 1 to 120 GeV and 1 to 54 GeV/nucleon, respectively, measured by a balloon flight of the BESS spectrometer in 1998. The magnetic-rigidity of the cosmic-rays was reliably determined by highly precise measurement of the circular track in a uniform solenoidal magnetic field of 1 Tesla. Those spectra were determined within overall uncertainties of +-5 % for protons and +- 10 % for helium nuclei including statistical and systematic errors.
Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm$^{-2}$. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 $pm$ 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 $pm$ 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 $pm$ 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.
We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.