No Arabic abstract
We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts possessing an afterglow plateau phase. We reveal that $L_a-T^{*}_a$ correlation between the X-ray luminosity $L_a$ at the end of the plateau phase and the plateau duration, $T^*_a$, in the GRB rest frame has a power law slope different, within more than 2 $sigma$, from the slope of the prompt $L_{f}-T^{*}_{f}$ correlation between the isotropic pulse peak luminosity, $L_{f}$, and the pulse duration, $T^{*}_{f}$, from the time since the GRB ejection. Analogously, we show differences between the prompt and plateau phases in the energy-duration distributions with the afterglow emitted energy being on average $10%$ of the prompt emission. Moreover, the distribution of prompt pulse versus afterglow spectral indexes do not show any correlation. In the further analysis we demonstrate that the $L_{peak}-L_a$ distribution, where $L_{peak}$ is the peak luminosity from the start of the burst, is characterized with a considerably higher Spearman correlation coefficient, $rho=0.79$, than the one involving the averaged prompt luminosity, $L_{prompt}-L_a$, for the same GRB sample, yielding $rho=0.60$. Since some of this correlation could result from the redshift dependences of the luminosities, namely from their cosmological evolution we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic. We apply a partial correlation coefficient to the new de-evolved luminosities showing that the intrinsic correlation exists.
The correlation between the peak spectra energy ($E_p$) and the equivalent isotropic energy ($E_{rm iso}$) of long gamma-ray bursts (GRBs), the so-called Amati relation, is often used to constrain the high-redshift Hubble diagram. Assuming Lambda cold dark matter ($Lambda$CDM) cosmology, Wang et al. found a $gtrsim 3sigma$ tension in the data-calibrated Amati coefficients between low- and high-redshift GRB samples. To reduce the impact of fiducial cosmology, we use the Parameterization based on cosmic Age (PAge), an almost model-independent framework to trace the cosmological expansion history. We find that the low- and high-redshift tension in Amati coefficients stays almost the same for the broad class of models covered by PAge, indicating that the cosmological assumption is not the dominant driver of the redshift evolution of GRB luminosity correlation. Next, we analyze the selection effect due to flux limits in observations. We find Amati relation evolves much more significantly across energy scales of $E_{rm iso}$. We debias the GRB data by selectively discarding samples to match low-$z$ and high-$z$ $E_{rm iso}$ distributions. After debiasing, the Amati coefficients agree well between low-$z$ and high-$z$ data groups, whereas the evidence of $E_{rm iso}$-dependence of Amati relation remains to be strong. Thus, the redshift evolution of GRB luminosity correlation can be fully interpreted as a selection bias, and does not imply cosmological evolution of GRBs.
Aims: We characterize a sample of Gamma-Ray Bursts with low luminosity X-ray afterglows (LLA GRBs), and study their properties. Method: We select a sample consisting of the 12% faintest X-ray afterglows from the total population of long GRBs (lGRBs) with known redshift. We study their intrinsic properties (spectral index, decay index, distance, luminosity, isotropic radiated energy and peak energy) to assess whether they belong to the same population than the brighter afterglow events. Results: We present strong evidences that these events belong to a population of nearby events, different from that of the general population of lGRBs. These events are faint during their prompt phase, and include the few possible outliers of the Amati relation. Out of 14 GRB-SN associations, 9 are in LLA GRB sample, prompting for caution when using SN templates in observational and theoretical models for the general lGRBs population.
GRB 130925A is an ultra-long GRB, and it shows clear evidences for a thermal emission in the soft X-ray data of emph{Swift}/XRT ($sim0.5$,keV), lasting till the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (emph{NuSTAR}). The blackbody temperature, as measured by the emph{Swift}/XRT, shows a decreasing trend till the late phase (Piro et al. 2014) whereas the high-energy data reveals a significant blackbody component during the late epochs at an order of magnitude higher temperature ($sim5$,keV), as compared to the contemporaneous low energy data (Bellm et al. 2014). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power-law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both the blackbodies show a similar cooling behaviour upto the late time. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with diverse time-scales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB~090618, a source with significant wide band data during the early afterglow phase.
We analyse archival CGRO-BATSE X-ray flux and spin frequency measurements of GX 1+4 over a time span of 3000 days. We systematically search for time dependent variations of torque luminosity correlation. Our preliminary results indicate that the correlation shifts from being positive to negative on time scales of few 100 days.
GRB 190114C is the first gamma-ray burst detected at Very High Energies (VHE, i.e. >300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV -- 100 GeV energy range, up to ~ 50 seconds (i.e. before the MAGIC detection) can hold valuable information. We analyze the spectral evolution of the emission of GRB 190114C as detected by the Fermi Gamma-Ray Burst Monitor (GBM) in the 10 keV -- 40 MeV energy range up to ~60 sec. The first 4 s of the burst feature a typical prompt emission spectrum, which can be fit by a smoothly broken power-law function with typical parameters. Starting on ~4 s post-trigger, we find an additional nonthermal component, which can be fit by a power law. This component rises and decays quickly. The 10 keV -- 40 MeV flux of the power-law component peaks at ~ 6 s; it reaches a value of 1.7e-5 erg cm-2 s-1. The time of the peak coincides with the emission peak detected by the Large Area Telescope (LAT) on board Fermi. The power-law spectral slope that we find in the GBM data is remarkably similar to that of the LAT spectrum, and the GBM+LAT spectral energy distribution seems to be consistent with a single component. This suggests that the LAT emission and the power-law component that we find in the GBM data belong to the same emission component, which we interpret as due to the afterglow of the burst. The onset time allows us to estimate the initial jet bulk Lorentz factor Gamma_0 is about 500, depending on the assumed circum-burst density.