Do you want to publish a course? Click here

A matter of measurement: rotation velocities and the velocity function of dwarf galaxies

50   0   0.0 ( 0 )
 Added by Chris Brook Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The velocity function derived from large scale surveys can be compared with the predictions of LCDM cosmology, by matching the measured rotation velocities Vrot of galaxies to the maximum circular velocity of dark matter (DM) halos Vmax. For Vrot<50km/s, a major discrepancy arises between the observed and LCDM velocity functions. However, the manner in which different observational measures of Vrot are associated with Vmax is not straight forward in dwarf galaxies. We instead relate galaxies to DM halos using the empirical baryon- mass to halo-mass relation, and show that different observational measures of Vrot result in very different velocity functions. We show how the W50 velocity function, i.e. using the HI profile line width at 50% of peak HI flux to measure Vrot, can be reconciled with a LCDM cosmology. Our semi-empirical methodology allows us to determine the region of rotation curves that are probed by HI measurements (RHI), and shows that the Vrot of dwarfs are generally measured at a fraction of Rmax, explaining their tendency to have rising rotation curves. We provide fitting formulae for relating RHI and Reff (the effective radius) to the virial radius of DM halos. To continue to use velocity functions as a probe of LCDM cosmology, it is necessary to be precise about how the different measures of rotation velocity are probing the mass of the DM halos, dropping the assumption that any measure of rotational velocity can be equally used as a proxy for Vmax.



rate research

Read More

We present cosmological hydrodynamical simulations of the formation of dwarf galaxies in a representative sample of haloes extracted from the Millennium-II Simulation. Our six haloes have a z = 0 mass of ~10^10 solar masses and show different mass assembly histories which are reflected in different star formation histories. We find final stellar masses in the range 5 x 10^7 - 10^8 solar masses, consistent with other published simulations of galaxy formation in similar mass haloes. Our final objects have structures and stellar populations consistent with dwarf elliptical and dwarf irregular galaxies. However, in a Lambda CDM universe, 10^10 solar mass haloes must typically contain galaxies with much lower stellar mass than our simulated objects if they are to match observed galaxy abundances. The dwarf galaxies formed in our own and all other current hydrodynamical simulations are more than an order of magnitude more luminous than expected for haloes of this mass. We discuss the significance and possible implications of this result.
122 - Lorenzo Posti 2013
Early-type galaxies (ETGs) are observed to be more compact, on average, at $z gtrsim 2$ than at $zsimeq 0$, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion ($sigma_0$) and half-mass radius ($r_{rm h}$) as functions of halo mass $M$ and redshift $z$, in a cosmological $Lambda$-CDM $N$-body simulation. In the range $0lesssim zlesssim 2.5$, we find $sigma_0propto M^{0.31-0.37}$ and $r_{rm h}propto M^{0.28-0.32}$, close to the values expected for homologous virialized systems. At fixed $M$ in the range $10^{11} M_odot lesssim Mlesssim 5.5 times 10^{14} M_odot$ we find $sigma_0propto(1+z)^{0.35}$ and $r_{rm h}propto(1+z)^{-0.7}$. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks $sigma_0propto M^{0.2}$ and $r_{rm h}propto M^{0.6}$, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the $N$-body data with ETGs observed at $0lesssim zlesssim3$ by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to $z simeq 2$, but the model has difficulty reproducing the fast evolution observed at $zgtrsim 2$. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.
234 - Mark Vogelsberger 2014
We present the first cosmological simulations of dwarf galaxies, which include dark matter self-interactions and baryons. We study two dwarf galaxies within cold dark matter, and four different elastic self-interacting scenarios with constant and velocity-dependent cross sections, motivated by a new force in the hidden dark matter sector. Our highest resolution simulation has a baryonic mass resolution of $1.8times 10^2,{rm M}_odot$ and a gravitational softening length of $34,{rm pc}$ at $z=0$. In this first study we focus on the regime of mostly isolated dwarf galaxies with halo masses $sim10^{10},{rm M}_odot$ where dark matter dynamically dominates even at sub-kpc scales. We find that while the global properties of galaxies of this scale are minimally affected by allowed self-interactions, their internal structures change significantly if the cross section is large enough within the inner sub-kpc region. In these dark-matter-dominated systems, self-scattering ties the shape of the stellar distribution to that of the dark matter distribution. In particular, we find that the stellar core radius is closely related to the dark matter core radius generated by self-interactions. Dark matter collisions lead to dwarf galaxies with larger stellar cores and smaller stellar central densities compared to the cold dark matter case. The central metallicity within $1,{rm kpc}$ is also larger by up to $sim 15%$ in the former case. We conclude that the mass distribution, and characteristics of the central stars in dwarf galaxies can potentially be used to probe the self-interacting nature of dark matter.
139 - James S. Bullock 2009
Over the past five years, searches in Sloan Digital Sky Survey data have more than doubled the number of known dwarf satellite galaxies of the Milky Way, and have revealed a population of ultra-faint galaxies with luminosities smaller than typical globular clusters, L ~ 1000 Lsun. These systems are the faintest, most dark matter dominated, and most metal poor galaxies in the universe. Completeness corrections suggest that we are poised on the edge of a vast discovery space in galaxy phenomenology, with hundreds more of these extreme galaxies to be discovered as future instruments hunt for the low-luminosity threshold of galaxy formation. Dark matter dominated dwarfs of this kind probe the small-scale power-spectrum, provide the most stringent limits on the phase-space packing of dark matter, and offer a particularly useful target for dark matter indirect detection experiments. Full use of dwarfs as dark matter laboratories will require synergy between deep, large-area photometric searches; spectroscopic and astrometric follow-up with next-generation optical telescopes; and subsequent observations with gamma-ray telescopes for dark matter indirect detection.
192 - Abraham Loeb , Neal Weiner 2010
We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross-section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا