Do you want to publish a course? Click here

Measurement of Azimuthal Modulations in the Cross-Section of Di-Pion Pairs in Di-Jet Production from Electron-Positron Annihilation

124   0   0.0 ( 0 )
 Added by Anselm Vossen
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present an extraction of azimuthal correlations between two pairs of charged pions detected in opposite jets from electron-positron annihilation. These correlations may arise from the dependence of the di-pion fragmentation on the polarization of the parent quark in the process $e^+e^- rightarrow q bar{q}$. Due to the correlation of the quark polarizations, the cross-section of di-pion pair production, in which the pion pairs are detected in opposite jets in a dijet event, exhibits a modulation in the azimuthal angles of the planes containing the hadron pairs with respect to the production plane. The measurement of this modulation allows access to combinations of fragmentation functions that are sensitive to the quarks transverse polarization and helicity. Within our uncertainties we do not observe a significant signal from the previously unmeasured helicity dependent fragmentation function $G_1^perp$. This measurement uses a dataset of 938~fb$^{-1}$ collected by the Belle experiment at or near $sqrt{s}approx10.58$ GeV.



rate research

Read More

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.
The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
The Collins effect connects transverse quark spin with a measurable azimuthal asymmetry in the yield of hadronic fragments around the quarks momentum vector. Using two different reconstruction methods we measure statistically significant azimuthal asymmetries for charged pion pairs in e+e- annihilation at center-of-mass energies of 10.52 GeV and 10.58 GeV, which can be attributed to the fragmentation of primordial quarks with transverse spin components. The measurement was performed using a dataset of 547 fb^{-1} collected by the Belle detector at KEKB improving the statistics of the previously published results by nearly a factor of 20.
Expressions for Sudakov form factors for heavy quarks are presented. They are used to construct resummed jet rates in electron-positron annihilation. Predictions are given for production of bottom quarks at LEP and top quarks at the Linear Collider.
Process of muon (pion) pair production with small invariant mass in the electron-positron high-energy annihilation, accompanied by emission of hard photon at large angles, is considered. We find that the Dell-Yan picture for differential cross section is valid in the charge-even experimental set-up. Radiative corrections both for electron block and for final state block are taken into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا