Do you want to publish a course? Click here

Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

115   0   0.0 ( 0 )
 Added by Bin Gao
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Intelligence Quotient (IQ) Test is a set of standardized questions designed to evaluate human intelligence. Verbal comprehension questions appear very frequently in IQ tests, which measure humans verbal ability including the understanding of the words with multiple senses, the synonyms and antonyms, and the analogies among words. In this work, we explore whether such tests can be solved automatically by artificial intelligence technologies, especially the deep learning technologies that are recently developed and successfully applied in a number of fields. However, we found that the task was quite challenging, and simply applying existing technologies (e.g., word embedding) could not achieve a good performance, mainly due to the multiple senses of words and the complex relations among words. To tackle these challenges, we propose a novel framework consisting of three components. First, we build a classifier to recognize the specific type of a verbal question (e.g., analogy, classification, synonym, or antonym). Second, we obtain distributed representations of words and relations by leveraging a novel word embedding method that considers the multi-sense nature of words and the relational knowledge among words (or their senses) contained in dictionaries. Third, for each type of questions, we propose a specific solver based on the obtained distributed word representations and relation representations. Experimental results have shown that the proposed framework can not only outperform existing methods for solving verbal comprehension questions but also exceed the average performance of the Amazon Mechanical Turk workers involved in the study. The results indicate that with appropriate uses of the deep learning technologies we might be a further step closer to the human intelligence.



rate research

Read More

128 - Lingfei Wu , Ian E.H. Yen , Kun Xu 2018
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called emph{Word Movers Distance} (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the emph{Word Movers Embedding } (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.
We address the novel problem of automatically generating quiz-style knowledge questions from a knowledge graph such as DBpedia. Questions of this kind have ample applications, for instance, to educate users about or to evaluate their knowledge in a specific domain. To solve the problem, we propose an end-to-end approach. The approach first selects a named entity from the knowledge graph as an answer. It then generates a structured triple-pattern query, which yields the answer as its sole result. If a multiple-choice question is desired, the approach selects alternative answer options. Finally, our approach uses a template-based method to verbalize the structured query and yield a natural language question. A key challenge is estimating how difficult the generated question is to human users. To do this, we make use of historical data from the Jeopardy! quiz show and a semantically annotated Web-scale document collection, engineer suitable features, and train a logistic regression classifier to predict question difficulty. Experiments demonstrate the viability of our overall approach.
242 - Yuan Miao , Gongqi Lin , Yidan Hu 2019
Reading comprehension is an important ability of human intelligence. Literacy and numeracy are two most essential foundation for people to succeed at study, at work and in life. Reading comprehension ability is a core component of literacy. In most of the education systems, developing reading comprehension ability is compulsory in the curriculum from year one to year 12. It is an indispensable ability in the dissemination of knowledge. With the emerging artificial intelligence, computers start to be able to read and understand like people in some context. They can even read better than human beings for some tasks, but have little clue in other tasks. It will be very beneficial if we can identify the levels of machine comprehension ability, which will direct us on the further improvement. Turing test is a well-known test of the difference between computer intelligence and human intelligence. In order to be able to compare the difference between people reading and machines reading, we proposed a test called (reading) Comprehension Ability Test (CAT).CAT is similar to Turing test, passing of which means we cannot differentiate people from algorithms in term of their comprehension ability. CAT has multiple levels showing the different abilities in reading comprehension, from identifying basic facts, performing inference, to understanding the intent and sentiment.
Knowledge Graph (KG) alignment is to discover the mappings (i.e., equivalent entities, relations, and others) between two KGs. The existing methods can be divided into the embedding-based models, and the conventional reasoning and lexical matching based systems. The former compute the similarity of entities via their cross-KG embeddings, but they usually rely on an ideal supervised learning setting for good performance and lack appropriate reasoning to avoid logically wrong mappings; while the latter address the reasoning issue but are poor at utilizing the KG graph structures and the entity contexts. In this study, we aim at combining the above two solutions and thus propose an iterative framework named PRASE which is based on probabilistic reasoning and semantic embedding. It learns the KG embeddings via entity mappings from a probabilistic reasoning system named PARIS, and feeds the resultant entity mappings and embeddings back into PARIS for augmentation. The PRASE framework is compatible with different embedding-based models, and our experiments on multiple datasets have demonstrated its state-of-the-art performance.
Conversational Question Simplification (CQS) aims to simplify self-contained questions into conversational ones by incorporating some conversational characteristics, e.g., anaphora and ellipsis. Existing maximum likelihood estimation (MLE) based methods often get trapped in easily learned tokens as all tokens are treated equally during training. In this work, we introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimizes the minimum Levenshtein distance (MLD) through explicit editing actions. RISE is able to pay attention to tokens that are related to conversational characteristics. To train RISE, we devise an Iterative Reinforce Training (IRT) algorithm with a Dynamic Programming based Sampling (DPS) process to improve exploration. Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods and generalizes well on unseen data.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا