No Arabic abstract
Upcoming HI surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize HI objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.
New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects.
3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our frameworks performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.
Context. Current and future blind surveys for HI generate large catalogs of spectral lines for which automated characterization would be convenient. Aims. A 6-parameter mathematical model for HI galactic spectral lines is described. The aim of the paper is to show that this model is indeed a useful way to characterize such lines. Methods. The model is fitted to spectral lines extracted for the 34 spiral galaxies of the recent high-definition THINGS survey. Three scenarios with different instrumental characteristics are compared. Quantities obtained from the model fits, most importantly line width and total flux, are compared with analog quantities measured in more standard, non-parametric ways. Results. The model is shown to be a good fit to nearly all the THINGS profiles. When extra noise is added to the test spectra, the fits remain consistent; the model-fitting approach is also shown to return superior estimates of linewidth and flux under such conditions.
The past decade has seen significant advances in cm-wave VLBI extragalactic observations due to a wide range of technical successes, including the increase in processed field-of-view and bandwidth. The future inclusion of MeerKAT into global VLBI networks would provide further enhancement, particularly the dramatic sensitivity boost to >7000 km baselines. This will not be without its limitations, however, considering incomplete MeerKAT band overlap with current VLBI arrays and the small (real-time) field-of-view afforded by the phased up MeerKAT array. We provide a brief overview of the significant contributions MeerKAT-VLBI could make, with an emphasis on the scientific output of several MeerKAT extragalactic Large Survey Projects.
Pegase.3 is a Fortran 95 code modeling the spectral evolution of galaxies from the far-ultraviolet to submillimeter wavelengths. It also follows the chemical evolution of their stars, gas and dust. For a given scenario (a set of parameters defining the history of mass assembly, the star formation law, the initial mass function...), Pegase.3 consistently computes the following: * the star formation, infall, outflow and supernova rates from 0 to 20 Gyr; * the stellar metallicity, the abundances of main elements in the gas and the composition of dust; * the unattenuated stellar spectral energy distribution (SED); * the nebular SED, using nebular continua and emission lines precomputed with code Cloudy (Ferland et al. 2017); * the attenuation in star-forming clouds and the diffuse interstellar medium, by absorption and scattering on dust grains, of the stellar and nebular SEDs. For this, the code uses grids of the transmittance for spiral and spheroidal galaxies. We precomputed these grids through Monte Carlo simulations of radiative transfer based on the method of virtual interactions; * the re-emission by grains of the light they absorbed, taking into account stochastic heating. The main innovation compared to Pegase.2 is the modeling of dust emission and its evolution. The computation of nebular emission has also been entirely upgraded to take into account metallicity effects and infrared lines. Other major differences are that complex scenarios of evolution (derived for instance from cosmological simulations), with several episodes of star formation, infall or outflow, may now be implemented, and that the detailed evolution of the most important elements -- not only the overall metallicity -- is followed.