No Arabic abstract
This paper treats nonrelativistic matter and a scalar field $phi$ with a monotonically decreasing potential minimally coupled to gravity in flat Friedmann-Lema^{i}tre-Robertson-Walker cosmology. The field equations are reformulated as a three-dimensional dynamical system on an extended compact state space, complemented with cosmographic diagrams. A dynamical systems analysis provides global dynamical results describing possible asymptotic behavior. It is shown that one should impose emph{global and asymptotic} bounds on $lambda=-V^{-1},dV/dphi$ to obtain viable cosmological models that continuously deform $Lambda$CDM cosmology. In particular we introduce a regularized inverse power-law potential as a simple specific example.
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating $Lambda$CDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to $Lambda$CDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because $Lambda$CDM may be only an effective cosmology.
In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model $Lambda(t)=Lambda_*+3beta H^2$, where $Lambda_*$ and $beta$ are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters $Omega_m$ and $beta$, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.
By allowing torsion into the gravitational dynamics one can promote the cosmological constant, $Lambda$, to a dynamical variable in a class of quasi-topological theories. In this paper we perform a mini-superspace quantization of these theories in the connection representation. If $Lambda$ is kept fixed, the solution is a delta-normalizable version of the Chern-Simons (CS) state, which is the dual of the Hartle and Hawking and Vilenkin wave-functions. We find that the CS state solves the Wheeler-DeWitt equation also if $Lambda$ is rendered dynamical by an Euler quasi-topological invariant, {it in the parity-even branch of the theory}. In the absence of an infra-red (IR) cut-off, the CS state suggests the marginal probability $P(Lambda)=delta(Lambda)$. Should there be an IR cutoff (for whatever reason) the probability is sharply peaked at the cut off. In the parity-odd branch, however, we can still find the CS state as a particular (but not most general) solution, but further work is needed to sharpen the predictions. For the theory based on the Pontryagin invariant (which only has a parity-odd branch) the CS wave function no longer is a solution to the constraints. We find the most general solution in this case, which again leaves room for a range of predictions for $Lambda$.
In [Schmidt PRD 80 123003 (2009)], the author suggested that dynamical dark energy (DDE) propagating on the phantom brane could mimick $Lambda$CDM. Schmidt went on to derive a phenomenological expression for $rho_{rm DE}$ which could achieve this. We demonstrate that while Schmidts central premise is correct, the expression for $rho_{rm DE}$ derived in Schmidt (2009) is flawed. We derive the correct expression for $rho_{rm DE}$ which leads to $Lambda$CDM-like expansion on the phantom brane. We also show that DDE on the brane can be associated with a Quintessence field and derive a closed form expression for its potential $V(phi)$. Interestingly the $alpha$-attractor based potential $V(phi) propto coth^2{lambdaphi}$ makes braneworld expansion resemble $Lambda$CDM. However the two models can easily be distinguished on the basis of density perturbations which grow at different rates on the braneworld and in $Lambda$CDM.
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; the BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.