Do you want to publish a course? Click here

Clustering via Content-Augmented Stochastic Blockmodels

145   0   0.0 ( 0 )
 Added by J Massey Cashore
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Much of the data being created on the web contains interactions between users and items. Stochastic blockmodels, and other methods for community detection and clustering of bipartite graphs, can infer latent user communities and latent item clusters from this interaction data. These methods, however, typically ignore the items contents and the information they provide about item clusters, despite the tendency of items in the same latent cluster to share commonalities in content. We introduce content-augmented stochastic blockmodels (CASB), which use item content together with user-item interaction data to enhance the user communities and item clusters learned. Comparisons to several state-of-the-art benchmark methods, on datasets arising from scientists interacting with scientific articles, show that content-augmented stochastic blockmodels provide highly accurate clusters with respect to metrics representative of the underlying community structure.



rate research

Read More

In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we introduce a Bayesian nonparametric formulation of the SBM and a corresponding algorithm to efficiently find communities in bipartite networks which parsimoniously chooses the number of communities. The biSBM improves community detection results over general SBMs when data are noisy, improves the model resolution limit by a factor of $sqrt{2}$, and expands our understanding of the complicated optimization landscape associated with community detection tasks. A direct comparison of certain terms of the prior distributions in the biSBM and a related high-resolution hierarchical SBM also reveals a counterintuitive regime of community detection problems, populated by smaller and sparser networks, where nonhierarchical models outperform their more flexible counterpart.
We propose a novel graph clustering method guided by additional information on the underlying structure of the clusters (or communities). The problem is formulated as the matching of a graph to a template with smaller dimension, hence matching $n$ vertices of the observed graph (to be clustered) to the $k$ vertices of a template graph, using its edges as support information, and relaxed on the set of orthonormal matrices in order to find a $k$ dimensional embedding. With relevant priors that encode the density of the clusters and their relationships, our method outperforms classical methods, especially for challenging cases.
The count-min sketch (CMS) is a time and memory efficient randomized data structure that provides estimates of tokens frequencies in a data stream, i.e. point queries, based on random hashed data. Learning-augmented CMSs improve the CMS by learning models that allow to better exploit data properties. In this paper, we focus on the learning-augmented CMS of Cai, Mitzenmacher and Adams (textit{NeurIPS} 2018), which relies on Bayesian nonparametric (BNP) modeling of a data stream via Dirichlet process (DP) priors. This is referred to as the CMS-DP, and it leads to BNP estimates of a point query as posterior means of the point query given the hashed data. While BNPs is proved to be a powerful tool for developing robust learning-augmented CMSs, ideas and methods behind the CMS-DP are tailored to point queries under DP priors, and they can not be used for other priors or more general queries. In this paper, we present an alternative, and more flexible, derivation of the CMS-DP such that: i) it allows to make use of the Pitman-Yor process (PYP) prior, which is arguably the most popular generalization of the DP prior; ii) it can be readily applied to the more general problem of estimating range queries. This leads to develop a novel learning-augmented CMS under power-law data streams, referred to as the CMS-PYP, which relies on BNP modeling of the stream via PYP priors. Applications to synthetic and real data show that the CMS-PYP outperforms the CMS and the CMS-DP in the estimation of low-frequency tokens; this known to be a critical feature in natural language processing, where it is indeed common to encounter power-law data streams.
106 - Huan Qing , Jingli Wang 2020
Based on the classical Degree Corrected Stochastic Blockmodel (DCSBM) model for network community detection problem, we propose two novel approaches: principal component clustering (PCC) and normalized principal component clustering (NPCC). Without any parameters to be estimated, the PCC method is simple to be implemented. Under mild conditions, we show that PCC yields consistent community detection. NPCC is designed based on the combination of the PCC and the RSC method (Qin & Rohe 2013). Population analysis for NPCC shows that NPCC returns perfect clustering for the ideal case under DCSBM. PCC and NPCC is illustrated through synthetic and real-world datasets. Numerical results show that NPCC provides a significant improvement compare with PCC and RSC. Moreover, NPCC inherits nice properties of PCC and RSC such that NPCC is insensitive to the number of eigenvectors to be clustered and the choosing of the tuning parameter. When dealing with two weak signal networks Simmons and Caltech, by considering one more eigenvectors for clustering, we provide two refinements PCC+ and NPCC+ of PCC and NPCC, respectively. Both two refinements algorithms provide improvement performances compared with their original algorithms. Especially, NPCC+ provides satisfactory performances on Simmons and Caltech, with error rates of 121/1137 and 96/590, respectively.
335 - Huan Qing , Jingli Wang 2021
Mixed membership problem for undirected network has been well studied in network analysis recent years. However, the more general case of mixed membership for directed network remains a challenge. Here, we propose an interpretable model: bipartite mixed membership stochastic blockmodel (BiMMSB for short) for directed mixed membership networks. BiMMSB allows that row nodes and column nodes of the adjacency matrix can be different and these nodes may have distinct community structure in a directed network. We also develop an efficient spectral algorithm called BiMPCA to estimate the mixed memberships for both row nodes and column nodes in a directed network. We show that the approach is asymptotically consistent under BiMMSB. We demonstrate the advantages of BiMMSB with applications to a small-scale simulation study, the directed Political blogs network and the Papers Citations network.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا