No Arabic abstract
We present a comprehensive study of polar and magnetic excitations in BiFeO3 ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3 substrate. Infrared reflectivity spectroscopy was performed at temperatures from 5 to 900 K for the ceramics and below room temperature for the thin film. All 13 polar phonons allowed by the factor-group analysis were observed in theceramic samples. The thin-film spectra revealed 12 phonon modes only and an additional weak excitation, probably of spin origin. On heating towards the ferroelectric phase transition near 1100 K, some phonons soften, leading to an increase in the static permittivity. In the ceramics, terahertz transmission spectra show five low-energy magnetic excitations including two which were not previously known to be infrared active; at 5 K, their frequencies are 53 and 56 cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K, applying an external magnetic field of up to 7 T irreversibly alters the intensities of some of these modes. The frequencies of the observed spin excitations provide support for the recently developed complex model of magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)). The simultaneous infrared and Raman activity of the spin excitations is consistent with their assignment to electromagnons.
First-principles density-functional theory calculations show switching magnetization by 90 degree can be achieved in ultrathin BFO film by applying external electric-field. Up-spin carriers appear to the surface with positive field while down-spin ones to the negative field surface, arising from the redistribution of Fe-t2g orbital. The half-metallic behavior of Fe-3d states in the surface of R phase film makes it a promising candidate for AFM/FM bilayer heterostructure possessing electric-field tunable FM magnetization reversal and opens a new way towards designing spintronic multiferroics. The interface exchange-bias effect in this BFO/FM bilayer is mainly driven by the Fe-t2g orbital reconstruction, as well as spin transferring and rearrangement.
Oxygen-vacancies-related dielectric relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 (BLFM) thin film have been investigated by temperature-dependent impedance spectroscopy from 40 oC up to 200 oC. We found that hopping electrons and single-charged oxygen vacancies (VO.) coexist in the BLFM thin film and make contribution to dielectric response of grain and grain boundary respectively. The activation energy for VO. is shown to be 0.94 eV in the whole temperature range investigated, whereas the distinct activation energies for electrons are 0.136 eV below 110oC and 0.239 eV above 110oC in association with hopping along the Fe2+- VO.-Fe3+ chain and hopping between Fe2+-Fe3+, respectively, indicating different hopping processes for electrons. Moreover, it has been found that hopping electrons is in form of long rang movement, while localized and long range movement of oxygen vacancies coexist in BLFM film. The Cole-Cole plots in modulus formalism show a poly-dispersive nature of relaxation for oxygen vacancies and a unique relaxation time for hopping electrons. The scaling behavior of modulus spectra further suggests that the distribution of relaxation times for oxygen vacancies is temperature independent.
The conductive characteristics of Bi0.9La0.1Fe0.96Mg0.04O3(BLFM) thin film are investigated at various temperatures and a negative differential resistance (NDR) is observed in the thin film, where a leakage current peak occurs upon application of a downward electric field above 80 oC. The origin of the NDR behavior is shown to be related to the ionic defect of oxygen vacancies (VO..) present in the film. On the basis of analyzing the leakage mechanism and surface potential behavior, the NDR behavior can be understood by considering the competition between the polarized distribution and neutralization of VO...
First-principals calculations show that up-spin and down-spin carriers are accumulating adjacent to opposite surfaces of BiFeO3(BFO) film with applying external bias. The spin carriers are equal in magnitude and opposite in direction, and down-spin carriers move to the direction opposing the external electric field while up-spin ones along the field direction. This novel spin transfer properties make BFO film an intriguing candidate for application in spin capacitor and BFO-based multiferroic field-effect device.
We have studied the polarization fatigue of La and Mg co-substituted BiFeO3 thin film, where a polarization peak is observed during the fatigue process. The origin of such anomalous behavior is analyzed on the basis of the defect evolution using temperature-dependent impedance spectroscopy. It shows that the motion of oxygen vacancies (VO..) is associated with a lower energy barrier, accompanied by the injection of electrons into the film during the fatigue process. A qualitative model is proposed to explain the fatigue behavior, which involves the modification of the Schottky barrier upon the accumulation of VO.. at the metal-dielectric interface.