Do you want to publish a course? Click here

Optical signatures of quantum delocalization over extended domains in photosynthetic membranes

196   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the coherent coupling among iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of Forster rates.



rate research

Read More

145 - R. H. Squire 2016
A bacterial photosynthetic light harvesting complex PLHC absorbs a photon and transfers this energy almost perfectly at room temperature RT to a Reaction Center RC, where charge separation occurs. While there are a number of possible light absorbers involved in this process, our focus is the B850 and B875 complexes. We propose that the dominant feature of the ground states in the B850 ring and the B875 open chain are pseudo one dimensional metals due to each bacteriochlorophyll a BChl containing a coordinated magnesium ion Mg2+. The Mg ion structure undergoes a static Peierls distortion that results in symmetry breaking that changes the even spacing of the Mg/BChl molecules comprising the chains to the experimentally observed Mg/BChl dimers. The results are charge density waves CDW, one for each type of the two complexes that result in an energy gap in the single particle electronic spectrum and coherent phonon s spanning the entire rings. The ground state CDWs seem to have two functions the first is to form a stable optical platform and the second is to suppress radical formation and energy dissipation of the coherent excited state by creating single particle energy gaps. After excitation by a photon, the B850 exciton delocalizes on the ring a second photon can form a two-level exciton polariton that could be an alternative explanation for the splitting of the B850 exciton band. The coherent polariton formed could actively participate in uphill electronic energy transfer EET. Additionally we suggest other possible energy storage mechanisms and entanglement possibilities. We suggest experimental studies to clarify these proposals.
Near-unity energy transfer efficiency has been widely observed in natural photosynthetic complexes. This phenomenon has attracted broad interest from different fields, such as physics, biology, chemistry and material science, as it may offer valuable insights into efficient solar-energy harvesting. Recently, quantum coherent effects have been discovered in photosynthetic light harvesting, and their potential role on energy transfer has seen heated debate. Here, we perform an experimental quantum simulation of photosynthetic energy transfer using nuclear magnetic resonance (NMR). We show that an N- chromophore photosynthetic complex, with arbitrary structure and bath spectral density, can be effectively simulated by a system with log2 N qubits. The computational cost of simulating such a system with a theoretical tool, like the hierarchical equation of motion, which is exponential in N, can be potentially reduced to requiring a just polynomial number of qubits N using NMR quantum simulation. The benefits of performing such quantum simulation in NMR are even greater when the spectral density is complex, as in natural photosynthetic complexes. These findings may shed light on quantum coherence in energy transfer and help to provide design principles for efficient artificial light harvesting.
Energy transfer within photosynthetic systems can display quantum effects such as delocalized excitonic transport. Recently, direct evidence of long-lived coherence has been experimentally demonstrated for the dynamics of the Fenna-Matthews-Olson (FMO) protein complex [Engel et al., Nature 446, 782 (2007)]. However, the relevance of quantum dynamical processes to the exciton transfer efficiency is to a large extent unknown. Here, we develop a theoretical framework for studying the role of quantum interference effects in energy transfer dynamics of molecular arrays interacting with a thermal bath within the Lindblad formalism. To this end, we generalize continuous-time quantum walks to non-unitary and temperature-dependent dynamics in Liouville space derived from a microscopic Hamiltonian. Different physical effects of coherence and decoherence processes are explored via a universal measure for the energy transfer efficiency and its susceptibility. In particular, we demonstrate that for the FMO complex an effective interplay between free Hamiltonian and thermal fluctuations in the environment leads to a substantial increase in energy transfer efficiency from about 70% to 99%.
Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.
From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we study in a fully atomistic picture the electronic excitation transfer between two photosynthetic pigments in real time. This time-dependent quantum dynamics is based on fully atomistic structural models of the photosynthetic pigment. We analyze the dependence of the electronic excitation transfer with distance and orientation between photosynthetic pigments. We compare the results obtained from full quantum dynamics with analytical ones, based on a two level system model were the interaction between the pigments is dipolar. We observed that even when the distance of the photosynthetic pigment is about $30$ AA the deviation of the dipolarity is of about $15$ percent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا