Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
In this paper we compare different theoretical approaches to describe the dispersion of collective modes in Yukawa fluids when the inter-particle coupling is relatively weak, so that kinetic and potential contributions to the dispersion relation compete. Thorough comparison with the results from molecular dymamics simulation allows us to conclude that in the regime investigated the best description is provided by the sum of the generalized excess bulk modulus and the Bohm-Gross kinetic term.
The high frequency (instantaneous) shear modulus of three-dimensional Yukawa systems is evaluated in a wide parameter range, from the very weakly coupled gaseous state to the strongly coupled fluid at the crystallization point (Yukwa melt). This allows us to quantify how shear rigidity develops with increasing coupling and inter-particle correlations. The radial distribution functions (RDFs) needed to calculate the excess shear modulus have been obtained from extensive molecular dynamics (MD) simulations. MD results demonstrate that fluid RDFs appear quasi-universal on the curves parallel to the melting line of a Yukawa solid, in accordance with the isomorph theory of Roskilde-simple systems. This quasi-universality, allows to simplify considerably calculations of quantities involving integrals of the RDF (elastic moduli represent just one relevant example). The calculated reduced shear modulus grows linearly with the coupling parameter at weak coupling and approaches a quasi-constant asymptote at strong coupling. The asymptotic value at strong coupling is in reasonably good agreement with the existing theoretical approximation.
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and always vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic situation of non-Markovian quantum Brownian motion.
Lattice QCD with staggered fermions at strong coupling has long been studied in a dual representation to circumvent the finite baryon density sign problem. Monte Carlo simulations at finite temperature and density require anisotropic lattices. Recent results that established the non-perturbative functional dependence between the bare anisotropy $gamma$ and the physical anisotropy $a_s/a_t$ in the chiral limit are now extended to finite quark mass. We illustrate how the calibration of the anisotropy works and discuss the consequences of the anisotropy on thermodynamic observables. We also show first results on the energy density and pressure in the QCD phase diagram in the strong coupling regime.
For a long time, strong coupling expansions have not been applied systematically in lattice QCD thermodynamics, in view of the succes of numerical Monte Carlo studies. The persistent sign problem at finite baryo-chemical potential, however, has motivated investigations using these methods, either by themselves or combined with numerical evaluations, as a route to finite density physics. This article reviews the strategies, by which a number of qualitative insights have been attained, notably the emergence of the hadron resonance gas or the identification of the onset transition to baryon matter in specific regions of the QCD parameter space. For the simpler case of Yang-Mills theory, the deconfinement transition can be determined quantitatively even in the scaling region, showing possible prospects for continuum physics.
Sergey A. Khrapak
,Nikita P. Kryuchkov
,Stanislav O. Yurchenko
.
(2015)
.
"Practical thermodynamics of Yukawa systems at strong coupling"
.
Sergey Khrapak
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا