We consider the GNS Hilbert space $mathcal{H}$ of a uniformly hyper-finite $C^*$- algebra and study a class of unbounded Lindbladian arises from commutators. Exploring the local structure of UHF algebra, we have shown that the associated Hudson-Parthasarathy type quantum stochastic differential equation admits a unitary solution. The vacuum expectation of homomorphic co-cycle, implemented by the Hudson-Parthasarathy flow, is conservative and gives the minimal semi-group associated with the formal Lindbladian. We also associate conservative minimal semi-groups to another class of Lindbladian by solving the corresponding Evan-Hudson equation.