Do you want to publish a course? Click here

Demonstration of distinct semiconducting transport characteristics of monolayer graphene functionalized via plasma activation of substrate surfaces

92   0   0.0 ( 0 )
 Added by Wei-Hua Wang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report semiconducting behavior of monolayer graphene enabled through plasma activation of substrate surfaces. The graphene devices are fabricated by mechanical exfoliation onto pre-processed SiO2/Si substrates. Contrary to pristine graphene, these graphene samples exhibit a transport gap as well as nonlinear transfer characteristics, a large on/off ratio of 600 at cryogenic temperatures, and an insulating-like temperature dependence. Raman spectroscopic characterization shows evidence of sp3 hybridization of C atoms in the samples of graphene on activated SiO2/Si substrates. We analyze the hopping transport at low temperatures, and weak localization observed from magnetotransport measurements, suggesting a correlation between carrier localization and the sp3-type defects in the functionalized graphene. The present study demonstrates the functionalization of graphene using a novel substrate surface-activation method for future graphene-based applications.



rate research

Read More

423 - M. S. Nevius , M. Conrad , F. Wang 2015
While numerous methods have been proposed to produce semiconducting graphene, a significant bandgap has never been demonstrated. The reason is that, regardless of the theoretical gap formation mechanism, disorder at the sub-nanometer scale prevents the required chiral symmetry breaking necessary to open a bandgap in graphene. In this work, we show for the first time that a 2D semiconducting graphene film can be made by epitaxial growth. Using improved growth methods, we show by direct band measurements that a bandgap greater than 0.5 eV can be produced in the first graphene layer grown on the SiC(0001) surface. This work demonstrates that order, a property that remains lacking in other graphene systems, is key to producing electronically viable semiconducting graphene.
Hydrodynamic behavior in electronic systems is commonly accepted to be associated with extremely clean samples such that electron-electron collisions dominate and total momentum is conserved. Contrary to this, we show that in monolayer graphene the presence of disorder is essential to enable an unconventional hydrodynamic regime which exists near the charge neutrality point and is characterized by a large enhancement of the Wiedemann-Franz ratio. Although the enhancement becomes more pronounced with decreasing disorder, the very possibility of observing the effect depends crucially on the presence of disorder. We calculate the maximum extrinsic carrier density $n_c$ below which the effect becomes manifest, and show that $n_c$ vanishes in the limit of zero disorder. For $n>n_c$ we predict that the Wiedemann-Franz ratio actually decreases with decreasing disorder. We complete our analysis by presenting a transparent picture of the physical processes that are responsible for the crossover from conventional to disorder-enabled hydrodynamics. Recent experiments on monolayer graphene are discussed and shown to be consistent with this picture.
At high magnetic fields, monolayer graphene hosts competing phases distinguished by their breaking of the approximate SU(4) isospin symmetry. Recent experiments have observed an even denominator fractional quantum Hall state thought to be associated with a transition in the underlying isospin order from a spin-singlet charge density wave at low magnetic fields to an antiferromagnet at high magnetic fields, implying that a similar transition must occur at charge neutrality. However, this transition does not generate contrast in typical electrical transport or thermodynamic measurements and no direct evidence for it has been reported, despite theoretical interest arising from its potentially unconventional nature. Here, we measure the transmission of ferromagnetic magnons through the two dimensional bulk of clean monolayer graphene. Using spin polarized fractional quantum Hall states as a benchmark, we find that magnon transmission is controlled by the detailed properties of the low-momentum spin waves in the intervening Hall fluid, which is highly density dependent. Remarkably, as the system is driven into the antiferromagnetic regime, robust magnon transmission is restored across a wide range of filling factors consistent with Pauli blocking of fractional quantum hall spin-wave excitations and their replacement by conventional ferromagnetic magnons confined to the minority graphene sublattice. Finally, using devices in which spin waves are launched directly into the insulating charge-neutral bulk, we directly detect the hidden phase transition between bulk insulating charge density wave and a canted antiferromagnetic phases at charge neutrality, completing the experimental map of broken-symmetry phases in monolayer graphene.
We investigate the morphology of quasi-free-standing monolayer graphene (QFMLG) formed at several temperatures by hydrogen intercalation and discuss its relationship with transport properties. Features corresponding to incomplete hydrogen intercalation at the graphene-substrate interface are observed by scanning tunneling microscopy on QFMLG formed at 600 and 800{deg}C. They contribute to carrier scattering as charged impurities. Voids in the SiC substrate and wrinkling of graphene appear at 1000{deg}C, and they decrease the carrier mobility significantly.
The temperature-induced shift of the Raman G line in epitaxial graphene on SiC and Ni surfaces, as well as in graphene supported on SiO2, is investigated with Raman spectroscopy. The thermal shift rate of epitaxial graphene on 6H-SiC(0001) is found to be about three times that of freestanding graphene. This result is explained quantitatively as a consequence of pinning by the substrate. In contrast, graphene grown on polycrystalline Ni films is shown to be unpinned, i.e., to behave elastically as freestanding, despite the relatively strong interaction with the metal substrate. Moreover, it is shown that the transfer of exfoliated graphene layers onto a supporting substrate can result in pinned or unpinned layers, depending on the transfer protocol.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا