Do you want to publish a course? Click here

Effects of hot halo gas on the star formation and mass transfer during distant galaxy-galaxy encounters

106   0   0.0 ( 0 )
 Added by Jeong-Sun Hwang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use $N$-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of $sim$100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into the ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.



rate research

Read More

Currently-proposed galaxy quenching mechanisms predict very different behaviours during major halo mergers, ranging from significant quenching enhancement (e.g., clump-induced gravitational heating models) to significant star formation enhancement (e.g., gas starvation models). To test real galaxies behaviour, we present an observational galaxy pair method for selecting galaxies whose host haloes are preferentially undergoing major mergers. Applying the method to central L* (10^10 Msun < M_* < 10^10.5 Msun) galaxies in the Sloan Digital Sky Survey (SDSS) at z<0.06, we find that major halo mergers can at most modestly reduce the star-forming fraction, from 59% to 47%. Consistent with past research, however, mergers accompany enhanced specific star formation rates for star-forming L* centrals: ~10% when a paired galaxy is within 200 kpc (approximately the host halos virial radius), climbing to ~70% when a paired galaxy is within 30 kpc. No evidence is seen for even extremely close pairs (<30 kpc separation) rejuvenating star formation in quenched galaxies. For galaxy formation models, our results suggest: (1) quenching in L* galaxies likely begins due to decoupling of the galaxy from existing hot and cold gas reservoirs, rather than a lack of available gas or gravitational heating from infalling clumps, (2) state-of-the-art semi-analytic models currently over-predict the effect of major halo mergers on quenching, and (3) major halo mergers can trigger enhanced star formation in non-quenched central galaxies.
141 - Ji-hoon Kim 2009
In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8e10 Ms each), including star formation and feedback. With galaxies resolved by ~2e7 total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime $10^{12}leq (M_{200}/M_{odot})< 10^{14}$. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies towards the group center by a factor $sim 1.2$ with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0 micron) and MIPS (24 and 70 micron) instruments and sensitive HI data from the Australia Telescope Compact Array (ATCA) and the 64-m Parkes telescope. These were supplemented by CO maps from the Swedish-ESO Submillimetre Telescope (SEST). Because Circinus is hidden behind the Galactic Plane, we demonstrate the careful removal of foreground stars as well as large- and small-scale Galactic emission from the Spitzer images. We derive a visual extinction of Av = 2.1 mag from the Spectral Energy Distribution of the Circinus Galaxy and total stellar and gas masses of 9.5 x 10^{10} Msun and 9 x 10^9 Msun, respectively. Using various wavelength calibrations, we find obscured global star formation rates between 3 and 8 Msun yr^{-1}. Star forming regions in the inner spiral arms of Circinus, which are rich in HI, are beautifully unveiled in the Spitzer 8 micron image. The latter is dominated by polycyclic aromatic hydrocarbon (PAH) emission from heated interstellar dust. We find a good correlation between the 8 micron emission in the arms and regions of dense HI gas. The (PAH 8 micron) / 24 micron surface brightness ratio shows significant variations across the disk of Circinus.
Cosmological hydrodynamical simulations as well as observations indicate that spiral galaxies are comprised of five different components: dark matter halo, stellar disc, stellar bulge, gaseous disc and gaseous halo. While the first four components have been extensively considered in numerical simulations of binary galaxy mergers, the effect of a hot gaseous halo has usually been neglected even though it can contain up to 80% of the total gas within the galaxy virial radius. We present a series of hydrodynamic simulations of major mergers of disc galaxies, that for the first time include a diffuse, rotating, hot gaseous halo. Through cooling and accretion, the hot halo can dissipate and refuel the cold gas disc before and after a merger. This cold gas can subsequently form stars, thus impacting the morphology and kinematics of the remnant. Simulations of isolated systems with total mass M~10^12Msun show a nearly constant star formation rate of ~5Msun/yr if the hot gaseous halo is included, while the star formation rate declines exponentially if it is neglected. We conduct a detailed study of the star formation efficiency during mergers and find that the presence of a hot gaseous halo reduces the starburst efficiency (e=0.5) compared to simulations without a hot halo (e=0.68). Moreover we find cases where the stellar mass of the merger remnant is lower than the sum of the stellar mass of the two progenitor galaxies when evolved in isolation. This suggests a revision to semi-analytic galaxy formation models which assume that a merger always leads to enhanced star formation. We show that adding the hot gas component has a significant effect on the kinematics and internal structure of the merger remnants, like an increased abundance of fast rotators and an r^(1/4) surface brightness profile at small scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا