Do you want to publish a course? Click here

Skyrmion dynamics in chiral ferromagnets

114   0   0.0 ( 0 )
 Added by S. Komineas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of skyrmions in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. An important link between topology and dynamics is established through the construction of unambiguous conservation laws obtained earlier in connection with magnetic bubbles and vortices. In particular, we study the motion of a topological skyrmion with skyrmion number $Q=1$ and a non-topological skyrmionium with $Q=0$ under the influence of an external field gradient. The $Q=1$ skyrmion undergoes Hall motion perpendicular to the direction of the field gradient with a drift velocity proportional to the gradient. In contrast, the non-topological $Q=0$ skyrmionium is accelerated in the direction of the field gradient, thus exhibiting ordinary Newtonian motion. When the external field is switched off the $Q=1$ skyrmion is spontaneously pinned around a fixed guiding center, whereas the $Q=0$ skyrmionium moves with constant velocity $v$. We give a systematic calculation of a skyrmionium traveling with any constant velocity $v$ that is smaller than a critical velocity $v_c$.



rate research

Read More

We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number $Q=1$ and a non-topological skyrmionium with $Q=0$ using their linear momentum, virial relations, and numerical simulations. The non-topological $Q=0$ skyrmionium is accelerated in the direction of the current flow and it either reaches a steady state with constant velocity, or it is elongated to infinity. The steady-state velocity is given by a balance between current and dissipation and has an upper limit. In contrast, the topological $Q=1$ skyrmion converges to a steady-state with constant velocity at an angle to the current flow. When the spin current stops the $Q=1$ skyrmion is spontaneously pinned whereas the $Q=0$ skyrmionium continues propagation. Exact solutions for the propagating skyrmionium are identified as solutions of equations given numerically in a previous work. Further exact results for propagating skyrmions are given in the case of the pure exchange model. The traveling solutions provide arguments that a spin-polarized current will cause rigid motion of a skyrmion or a skyrmionium.
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-field based anisotropy, traveling wave solutions are not found in closed form. For the construction we follow a topological approach and provide details of solutions by means of numerical calculations.
We find numerically skyrmionic textures with skyrmion number Q=0 in ferromagnets with the Dzyaloshinskii-Moriya interaction and perpendicular anisotropy. These have the form of a skyrmion-antiskyrmion pair and may be called chiral droplets. They are stable in an infinite film as well as in disc-shaped magnetic elements. Droplets are found for values of the parameters close to the transition from the ferromagnetic to the spiral phase. We study their motion under spin-transfer torque. They move in the direction of the spin flow and, thus, their dynamics are drastically different than the Hall dynamics of the standard Q=0 skyrmion.
81 - J. Kipp , K. Samanta , F. R. Lux 2020
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effects, the topological Hall effect in non-coplanar antiferromagnets has been a subject of intensive research in the past decades. Here, we uncover a new flavour of the anomalous Hall effect in canted spin systems. Using advanced theoretical tools we demonstrate that upon canting, the anomalous Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality among spins. We explore the origins and basic properties of corresponding chiral Hall effect, and closely tie it to the symmetry properties of the system. Our findings suggest that the chiral Hall effect and corresponding chiral magneto-optical effects emerge as novel versatile tools in characterizing an interplay of structure and chirality in complex magnets, as well as in tracking their chiral dynamics and fluctuations.
The understanding of how spins move at pico- and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data storage. However, the limited comprehension of the physics behind this phenomenon has hampered the possibility of realising a commercial technology based on it. Recently, it has been suggested that inertial effects should be considered in the full description of the spin dynamics at these ultrafast time scales, but a clear observation of such effects in ferromagnets is still lacking. Here, we report the first direct experimental evidence of inertial spin dynamics in ferromagnetic thin films in the form of a nutation of the magnetisation at a frequency of approximately 0.6 THz. This allows us to evince that the angular momentum relaxation time in ferromagnets is on the order of 10 ps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا