Do you want to publish a course? Click here

Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way

277   0   0.0 ( 0 )
 Added by Luigi Tibaldo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of gamma-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for gamma-ray emission produced by CR interactions in several high- and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic plane. We achieve the first detection of intermediate-velocity clouds in gamma rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the gamma-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.



rate research

Read More

150 - L. Tibaldo , S. W. Digel 2015
Cosmic rays up to at least PeV energies are usually described in the framework of an elementary scenario that involves acceleration by objects that are located in the disk of the Milky Way, such as supernova remnants or massive star-forming regions, and then diffusive propagation throughout the Galaxy. Details of the propagation process are so far inferred mainly from the composition of cosmic rays measured near the Earth and then extrapolated to the whole Galaxy. The details of the propagation in the Galactic halo and the escape into the intergalactic medium remain uncertain. The densities of cosmic rays in specific locations can be traced via the gamma rays they produce in inelastic collisions with clouds of interstellar gas. Therefore, we analyze 73 months of Fermi-LAT data from 300 MeV to 10 GeV in the direction of several high- and intermediate-velocity clouds that are located in the halo of the Milky Way. These clouds are supposed to be free of internal sources of cosmic rays and hence any gamma-ray emission from them samples the large-scale distribution of Galactic cosmic rays. We evaluate for the first time the gamma-ray emissivity per hydrogen atom up to ~7 kpc above the Galactic disk. The emissivity is found to decrease with distance from the disk, which provides direct evidence that cosmic rays at the relevant energies originate therein. Furthermore, the emissivity of one of the targets, the upper intermediate-velocity Arch, hints at a 50% decline of the cosmic-ray intensity within 2 kpc from the disk.
We report an analysis of the interstellar gamma-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within ~300 pc from the solar system. The gamma-ray emission produced by interactions of cosmic-rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained gamma-ray emissivities above 250 MeV are (5.9 +/- 0.1(stat) (+0.9/-1.0)(sys)), (10.2 +/- 0.4(stat) (+1.2/-1.7)(sys)), and (9.1 +/- 0.3(stat) (+1.5/-0.6)(sys)) x10^(-27) photons s^(-1) sr^(-1) H-atom^(-1) for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by ~20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, Xco = N(H2)/Wco, is found to be (0.96 +/- 0.06(stat) (+0.15/-0.12)(sys)), (0.99 +/- 0.08(stat) (+0.18/-0.10)(sys)), and (0.63 +/- 0.02(stat) (+0.09/-0.07)(sys)) x10^20 H2-molecule cm^(-2) (K km s^(-1))^(-1) for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of Xco in the vicinity of the solar system. From the obtained values of Xco, the masses of molecular gas traced by Wco in the Chamaeleon, R CrA, and Cepheus and Polaris flare regions are estimated to be ~5x10^3, ~10^3, and ~3.3x10^4 Msolar, respectively. A comparable amount of gas not traced well by standard HI and CO surveys is found in the regions investigated.
We report an analysis of the interstellar gamma-ray emission from nearby molecular clouds Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the {it Fermi} Large Area Telescope (LAT). They are among the nearest molecular cloud complexes, within $sim$ 300 pc from the solar system. The gamma-ray emission produced by interactions of cosmic-rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained gamma-ray emissivities from 250 MeV to 10 GeV for the three regions are about (6--10) $times$ 10$^{-27}$ photons s$^{-1}$ sr$^{-1}$ H-atom$^{-1}$, indicating a variation of the CR density by $sim$ 20% even if we consider the systematic uncertainties. The molecular mass calibration ratio, $X_{rm CO} = N{rm (H_2)}/W_{rm CO}$, is found to be about (0.6--1.0) $times$ 10$^{20}$ H$_2$-molecule cm$^{-2}$ (K km s$^{-1}$)$^{-1}$ among the three regions, suggesting a variation of $X_{rm CO}$ in the vicinity of the solar system. From the obtained values of $X_{rm CO}$, we calculated masses of molecular gas traced by Wco in these molecular clouds. In addition, similar amounts of dark gas at the interface between the atomic and molecular gas are inferred.
An accurate estimate of the interstellar gas density distribution is crucial to understanding the interstellar medium (ISM) and Galactic cosmic rays (CRs). To comprehend the ISM and CRs in a local environment, a study of the diffuse $gamma$-ray emission in a mid-latitude region of the third quadrant was performed. The $gamma$-ray data in the 0.1--25.6~GeV energy range of the Fermi Large Area Telescope (LAT) and other interstellar gas tracers such as the HI4PI survey data and the Planck dust thermal emission model were used, and the northern and southern regions were analyzed separately. The variation of the dust emission Dem with the total neutral gas column density NH was studied in high dust-temperature areas, and the NH/Dem ratio was calibrated using $gamma$-ray data under the assumption of a uniform CR intensity in the studied regions. The measured integrated $gamma$-ray emissivities above 100~MeV are $(1.58pm0.04)times10^{-26}~mathrm{photons~s^{-1}~sr^{-1}~Hmbox{-}atom^{-1}}$ and $(1.59pm0.02)times10^{-26}~mathrm{photons~s^{-1}~sr^{-1}~Hmbox{-}atom^{-1}}$ in the northern and southern regions, respectively, supporting the existence of a uniform CR intensity in the vicinity of the solar system. While most of the gas can be interpreted to be HI with a spin temperature of $T_mathrm{S} = 125~mathrm{K}$ or higher, an area dominated by optically thick HI with $T_mathrm{S} sim 40~mathrm{K}$ was identified.
Far Ultraviolet Spectroscopic Explorer (FUSE) data is used to investigate the molecular hydrogen (H_2) content of intermediate-velocity clouds (IVCs) in the lower halo of the Milky Way. We analyze interstellar absorption towards 56 (mostly extragalactic) background sources to study H_2 absorption in the Lyman- and Werner bands in 61 IVC components at H I column densities >10^19 cm^-2. For data with good S/N (~9 per resolution element and higher), H_2 in IVC gas is convincingly detected in 14 cases at column densities varying between ~10^14 and ~10^17 cm^-2. We find an additional 17 possible H_2 detections in IVCs in FUSE spectra with lower S/N. The molecular hydrogen fractions, f, vary between 10^-6 and 10^-3, implying a dense, mostly neutral gas phase that is probably related to the Cold Neutral Medium (CNM) in these clouds. If the H_2 stays in formation-dissociation equlibrium, the CNM in these clouds can be characterized by compact (D~0.1 pc) filaments with volume densities on the order of n_H~30 cm^-3. The relatively high detection rate of H_2 in IVC gas implies that the CNM in these clouds is ubiquitous. More dense regions with much higher molecular fractions may exist, but it would be difficult to detect them in absorption because of their small size.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا