We study the $SU(2)_k$ Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at $kgg 1$. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, $lambda$. Moreover for $lambda>0$ this behavior depends on whether $k$ is even or odd. With $k$ even, we find definitive evidence that the model at low energies is equivalent to the massive $O(3)$ sigma model. For $k$ odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.