No Arabic abstract
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite bond length. These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton-polariton interactions are repulsive. Furthermore, in the regime of attractive interactions, we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body Hamiltonian. This theoretical platform is applicable to ongoing experiments.
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium, many-body regime.
We study a coupled array of coherently driven photonic cavities, which maps onto a driven-dissipative XY spin-$frac{1}{2}$ model with ferromagnetic couplings in the limit of strong optical nonlinearities. Using a site-decoupled mean-field approximation, we identify steady state phases with canted antiferromagnetic order, in addition to limit cycle phases, where oscillatory dynamics persist indefinitely. We also identify collective bistable phases, where the system supports two steady states among spatially uniform, antiferromagnetic, and limit cycle phases. We compare these mean-field results to exact quantum trajectories simulations for finite one-dimensional arrays. The exact results exhibit short-range antiferromagnetic order for parameters that have significant overlap with the mean-field phase diagram. In the mean-field bistable regime, the exact quantum dynamics exhibits real-time collective switching between macroscopically distinguishable states. We present a clear physical picture for this dynamics, and establish a simple relationship between the switching times and properties of the quantum Liouvillian.
Qubits strongly coupled to a photonic crystal give rise to many exotic physical scenarios, beginning with single and multi-excitation qubit-photon dressed bound states comprising induced spatially localized photonic modes, centered around the qubits, and the qubits themselves. The localization of these states changes with qubit detuning from the band-edge, offering an avenue of in situ control of bound state interaction. Here, we present experimental results from a device with two qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and inter-bound state interactions. We observe a fourth-order two photon virtual process between bound states indicating strong coupling between the photonic crystal and qubits. Due to their localization-dependent interaction, these states offer the ability to create one-dimensional chains of bound states with tunable and potentially long-range interactions that preserve the qubits spatial organization, a key criterion for realization of certain quantum many-body models. The widely tunable, strong and robust interactions demonstrated with this system are promising benchmarks towards realizing larger, more complex systems of bound states.
We study the correlated transport of photons through a chain of three-level emitters that are coupled chirally to a photonic mode of a waveguide. It is found that this system can transfer a classical input into a strongly correlated state of light in a unitary manner, i.e. without the necessity of nonlinear photon losses. In particular, we shows that the collective interaction with the emitter ensemble leads to the emergence of highly antibunched light with long-range correlations upon crossing a critical length of the chain. By operating close to conditions of electromagnetically induced transparency of the three-level medium, the high degree of antibunching and photon transmission can be maintained in the presence of moderate losses. These features, combined with the robustness against number fluctuations, suggest a promising mechanism for single-photon generation and may open the door to exploring correlated quantum many-body states of light.