No Arabic abstract
We present the Penrose limits of a complex marginal deformation of $AdS_5times S^5$, which incorporates the $SL(2,mathbb{R})$ symmetry of type IIB theory, along the $(J,0,0)$ geodesic and along the $(J,J,J)$ geodesic. We discuss giant gravitons on the deformed $(J,0,0)$ pp-wave background.
A new approach to the computation of correlation functions involving two determinant operators as well as one non-protected single trace operator has recently been developed by Jiang, Komatsu and Vescovi. This correlation function provides the holographic description of the absorption of a closed string by a giant graviton. The analysis has a natural interpretation in the framework of group representation theory, which admits a generalization to general Schur polynomials and restricted Schur polynomials. This generalizes the holographic description to any giant or dual giant gravitons which carry more than one angular momentum on the sphere. For a restricted Schur polynomial labeled by a column with $N$ boxes (dual to a maximal giant graviton) we find evidence in favor of integrability.
We develop techniques to compute the one-loop anomalous dimensions of operators in the ${cal N}=4$ super Yang-Mills theory that are dual to open strings ending on boundstates of sphere giant gravitons. Our results, which are applicable to excitations involving an arbitrary number of open strings, generalize the single string results of hep-th/0701067. The open strings we consider carry angular momentum on an S$^3$ embedded in the S$^5$ of the AdS$_5times$S$^5$ background. The problem of computing the one loop anomalous dimensions is replaced with the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings propagating on multiple branes can arise dynamically.
We generalize the operators of ABJM theory, given by Schur polynomials, in ABJ theory by computing the two point functions in the free field and at finite $(N_1,N_2)$ limits. These polynomials are then identified with the states of the dual gravity theory. Further, we compute correlators among giant gravitons as well as between giant gravitons and ordinary gravitons through the corresponding correlators of ABJ(M) theory. Finally, we consider a particular non-trivial background produced by an operator with an $cal R$-charge of $O(N^2)$ and find, in presence of this background, due to the contribution of the non-planar corrections, the large $(N_1,N_2)$ expansion is replaced by $1/(N_1+M)$ and $1/(N_2+M)$ respectively.
We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal s
The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their alpha exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behaviour under T-duality are studied. In addition, we consider BPS $Dp$-branes, and show that these $Dp$-branes can be classified in terms of the locations of their world volumes with respect to the background $H$-field.