A PCA-Based Convolutional Network


Abstract in English

In this paper, we propose a novel unsupervised deep learning model, called PCA-based Convolutional Network (PCN). The architecture of PCN is composed of several feature extraction stages and a nonlinear output stage. Particularly, each feature extraction stage includes two layers: a convolutional layer and a feature pooling layer. In the convolutional layer, the filter banks are simply learned by PCA. In the nonlinear output stage, binary hashing is applied. For the higher convolutional layers, the filter banks are learned from the feature maps that were obtained in the previous stage. To test PCN, we conducted extensive experiments on some challenging tasks, including handwritten digits recognition, face recognition and texture classification. The results show that PCN performs competitive with or even better than state-of-the-art deep learning models. More importantly, since there is no back propagation for supervised finetuning, PCN is much more efficient than existing deep networks.

Download