No Arabic abstract
The unification model for powerful radio galaxies and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that radio galaxies and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from star-forming galaxies.
We present 0.3 (band 6) and 1.5 (band 3) ALMA observations of the (sub)millimeter dust continuum emission for 25 radio galaxies at 1<z<5.2. Our survey reaches a rms flux density of ~50$mu$Jy in band 6 and ~20$mu$Jy in band 3. This is an order of magnitude deeper than single-dish 850 $mu$m observations, and reaches fluxes where synchrotron and thermal dust emission are expected to be of the same order of magnitude. Combining our sensitive ALMA observations with radio data from ATCA, VLA, and IR photometry from Herschel and Spitzer, we have disentangled the synchrotron and thermal dust emission. We determine the star-formation rates (SFR) and AGN IR luminosities using our newly developed spectral energy distribution fitting code MrMoose. We find that synchrotron emission contributes substantially at ~1 mm. Through our sensitive flux limits and accounting for a contribution from synchrotron emission in the mm, we revise downward the median SFR by a factor of 7 compared to previous estimates based solely on Herschel and Spitzer data. The hosts of these radio-loud AGN appear predominantly below the main sequence of star-forming galaxies, indicating that the star formation in many of the host galaxies has been quenched. Future growth of the host galaxies without substantial black hole mass growth will be needed to bring these objects on the local relation between the supermassive black holes and their host galaxies. Given the mismatch in the timescales of any star formation that took place in the host galaxies and lifetime of the AGN, we hypothesize that a key role is played by star formation in depleting the gas before the action of the powerful radio jets quickly drives out the remaining gas. This positive feedback loop of efficient star formation rapidly consuming the gas coupled to the action of the radio jets in removing the residual gas is how massive galaxies are rapidly quenched.
At bright radio powers ($P_{rm 1.4 GHz} > 10^{25}$ W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for sources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range $10^{24} < P_{rm 1.4 GHz} < 10^{28}$ W/Hz, out to high redshift. A grid-based modelling method is used, in which no assumptions are made about the RLF shape and high-redshift behaviour. The inputs to the model are the same as in Rigby et al. (2011): redshift distributions from radio source samples, together with source counts and determinations of the local luminosity function. However, to improve coverage of the radio power vs. redshift plane at the lowest radio powers, a new faint radio sample is introduced. This covers 0.8 sq. deg., in the Subaru/XMM-Newton Deep Field, to a 1.4 GHz flux density limit of $S_{rm 1.4 GHz} geq 100~mu$Jy, with 99% redshift completeness. The modelling results show that the previously seen high-redshift declines in space density persist to $P_{rm 1.4 GHz} < 10^{25}$ W/Hz. At $P_{rm 1.4 GHz} > 10^{26}$ W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the observed variation in peak redshift.
Black hole mass scaling relations suggest that extremely massive black holes (EMBHs) with $M_mathrm{BH}ge10^{9.4},M_{odot}$ are found in the most massive galaxies with $M_mathrm{star}ge10^{11.6},M_{odot}$, which are commonly found in dense environments, like galaxy clusters. Therefore, one can expect that there is a close connection between active EMBHs and dense environments. Here, we study the environments of 9461 galaxies and 2943 quasars at $0.24 le z le 0.40$, among which 52 are extremely massive quasars with $log(M_mathrm{BH}/M_{odot}) ge 9.4$, using Sloan Digital Sky Survey and MMT Hectospec data. We find that, on average, both massive quasars and massive galaxies reside in environments more than $sim2$ times as dense as those of their less massive counterparts with $log(M_mathrm{BH}/M_{odot}) le 9.0$. However, massive quasars reside in environments about half as dense as inactive galaxies with $log(M_mathrm{BH}/M_{odot}) ge 9.4$, and only about one third of massive quasars are found in galaxy clusters, while about two thirds of massive galaxies reside in such clusters. This indicates that massive galaxies are a much better signpost for galaxy clusters than massive quasars. The prevalence of massive quasars in moderate to low density environments is puzzling, considering that several simulation results show that these quasars appear to prefer dense environments. Several possible reasons for this discrepancy are discussed, although further investigation is needed to obtain a definite explanation.
The discovery of luminous quasars at redshifts up to 7.5 demonstrates the existence of several billion M_sun supermassive black holes (SMBHs) less than a billion years after the Big Bang. They are accompanied by intense star formation in their host galaxies, pinpointing sites of massive galaxy assembly in the early universe, while their absorption spectra reveal an increasing neutral intergalactic medium (IGM) at the epoch of reionization. Extrapolating from the rapid evolution of the quasar density at z=5-7, we expect that there is only one luminous quasar powered by a billion M_sun SMBH in the entire observable universe at z~9. In the next decade, new wide-field, deep near-infrared (NIR) sky surveys will push the redshift frontier to the first luminous quasars at z~9-10; the combination with new deep X-ray surveys will probe fainter quasar populations that trace earlier phases of SMBH growth. The identification of these record-breaking quasars, and the measurements of their BH masses and accretion properties require sensitive spectroscopic observations with next generation of ground-based and space telescopes at NIR wavelengths. High-resolution integral-field spectroscopy at NIR, and observations at millimeter and radio wavelengths, will together provide a panchromatic view of the quasar host galaxies and their galactic environment at cosmic dawn, connecting SMBH growth with the rise of the earliest massive galaxies. Systematic surveys and multiwavelength follow-up observations of the earliest luminous quasars will strongly constrain the seeding and growth of the first SMBHs in the universe, and provide the best lines of sight to study the history of reionization.
Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters are present mainly in faint galaxies while upermassive black holes are common in galaxies with masses $geq 10^{10}$ M$_odot $. In the intermediate galactic mass range both types of central massive objects (CMOs) are found. Here we present our collection of a huge set of nuclear star cluster and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of nuclear star clusters and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and nuclear star clusters. The $M_{MBH}-{sigma}$ has a slope of $5.19pm 0.28$ while $M_{NSC}-{sigma}$ has the much smaller slope of $1.84pm 0.64$. The slopes of the CMO mass- host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass vs host galaxy mass at high host masses.