Do you want to publish a course? Click here

Radio Timing and Optical Photometry of the Black Widow System PSR J1953+1846A in the Globular Cluster M71

102   0   0.0 ( 0 )
 Added by MArio Cadelano
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the determination of the astrometric, spin and orbital parameters for PSR J1953+1846A, a black widow binary millisecond pulsar in the globular cluster M71. By using the accurate position and orbital parameters obtained from radio timing, we identified the optical companion in ACS/Hubble Space Telescope images. It turns out to be a faint (m_F606W>=24, m_F814W>=23) and variable star located at only ~0.06 from the pulsar timing position. The light curve shows a maximum at the pulsar inferior conjunction and a minimum at the pulsar superior conjunction, thus confirming the association with the system. The shape of the optical modulation suggests that the companion star is heated, likely by the pulsar wind. The comparison with the X-ray light curve possibly suggests the presence of an intra-binary shock due to the interaction between the pulsar wind and the material released by the companion. This is the second identification (after COM-M5C) of an optical companion to a black widow pulsar in a globular cluster. Interestingly, the two companions show a similar light curve and share the same position in the color magnitude diagram.



rate research

Read More

We report on the determination of astrometric, spin and orbital parameters for PSR J1518+0204C, a black widow binary millisecond pulsar in the globular cluster M5. The accurate position and orbital parameters obtained from radio timing allowed us to search for the optical companion. By using WFC3/HST images we identified a very faint variable star (m_F390W > 24.8, m_F606W > 24.3, m_F814W > 23.1) located at only 0.25 from the pulsars timing position. Due to its strong variability, this star is visible only in a sub-sample of images. However, the light curve obtained folding the available data with the orbital parameters of the pulsar shows a maximum at the pulsar inferior conjunction and a possible minimum at the pulsar superior conjunction. Furthermore, the shape of the optical modulation indicates a heating process possibly due to the pulsar wind. This is the first identification of an optical companion to a black widow pulsar in the dense stellar environment of a globular cluster.
We present optical time-resolved multi-band photometry of the black widow binary millisecond pulsar J2052+1219 using direct-imaging observations with the 2.1m telescope of Observatorio Astronomico Nacional San Pedro Martir, Mexico (OAN-SPM). The observations revealed a variable optical source whose position and periodicity P = 2.752h coincide with the pulsar coordinates and the orbital period obtained from radio timing. This allowed us to identify it with the binary companion of the pulsar. We reproduce light curves of the source modelling the companion heating by the pulsar and accounting for the system parameters obtained from the radio data. As a result, we independently estimate the distance to the system of 3.94(16) kpc, which agrees with the dispersion measure distance. The companion star size is 0.12-0.15 Rsun, close to filling its Roche lobe. It has a surface temperature difference of about 3000 K between the side facing the pulsar and the back side. We summarise characteristics of all black widow systems studied in the optical and compare them with the PSR J2052+1219 parameters derived from our observations.
By exploiting two ACS/HST datasets separated by a temporal baseline of ~7 years, we have determined the relative stellar proper motions (providing membership) and the absolute proper motion of the Galactic globular cluster M71. The absolute proper motion has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources.
We report on the timing observations of the millisecond pulsar PSR J2055+3829 originally discovered as part of the SPAN512 survey conducted with the Nanc{c}ay Radio Telescope. The pulsar has a rotational period of 2.089 ms, and is in a tight 3.1 hr orbit around a very low mass ($0.023 leq m_c lesssim 0.053$ M$_odot$, 90% c.l.) companion. Our 1.4 GHz observations reveal the presence of eclipses of the pulsars radio signal caused by the outflow of material from the companion, for a few minutes around superior conjunction of the pulsar. The very low companion mass, the observation of radio eclipses, and the detection of time variations of the orbital period establish PSR J2055+3829 as a `black widow (BW) pulsar. Inspection of the radio signal from the pulsar during ingress and egress phases shows that the eclipses in PSR J2055+3829 are asymmetric and variable, as is commonly observed in other similar systems. More generally, the orbital properties of the new pulsar are found to be very similar to those of other known eclipsing BW pulsars. No gamma-ray source is detected at the location of the pulsar in recent textit{Fermi}-LAT source catalogs. We used the timing ephemeris to search ten years of textit{Fermi} Large Area Telescope (LAT) data for gamma-ray pulsations, but were unable to detect any, possibly because of the pulsars large distance. We finally compared the mass functions of eclipsing and non-eclipsing BW pulsars and confirmed previous findings that eclipsing BWs have higher mass functions than their non-eclipsing counterparts. Larger inclinations could explain the higher mass functions of eclipsing BWs. On the other hand, the mass function distributions of Galactic disk and globular cluster BWs appear to be consistent, suggesting, despite the very different environments, the existence of common mechanisms taking place in the last stages of evolution of BWs.
We report the optical identification of the companion to the {it Fermi} black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck LRIS images at the nominal pulsar position, with 2 magnitude variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا