Do you want to publish a course? Click here

Live Inspection of Spreadsheets

91   0   0.0 ( 0 )
 Added by Daniel Kulesz
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Existing approaches for detecting anomalies in spreadsheets can help to discover faults, but they are often applied too late in the spreadsheet lifecycle. By contrast, our approach detects anomalies immediately whenever users change their spreadsheets. This live inspection approach has been implemented as part of the Spreadsheet Inspection Framework, enabling the tool to visually report findings without disturbing the users workflow. An advanced list representation allows users to keep track of the latest findings, prioritize open problems, and check progress on solving the issues. Results from a first user study indicate that users find the approach useful.



rate research

Read More

91 - Lin Shi , Xiao Chen , Ye Yang 2021
Modern communication platforms such as Gitter and Slack play an increasingly critical role in supporting software teamwork, especially in open source development.Conversations on such platforms often contain intensive, valuable information that may be used for better understanding OSS developer communication and collaboration. However, little work has been done in this regard. To bridge the gap, this paper reports a first comprehensive empirical study on developers live chat, investigating when they interact, what community structures look like, which topics are discussed, and how they interact. We manually analyze 749 dialogs in the first phase, followed by an automated analysis of over 173K dialogs in the second phase. We find that developers tend to converse more often on weekdays, especially on Wednesdays and Thursdays (UTC), that there are three common community structures observed, that developers tend to discuss topics such as API usages and errors, and that six dialog interaction patterns are identified in the live chat communities. Based on the findings, we provide recommendations for individual developers and OSS communities, highlight desired features for platform vendors, and shed light on future research directions. We believe that the findings and insights will enable a better understanding of developers live chat, pave the way for other researchers, as well as a better utilization and mining of knowledge embedded in the massive chat history.
261 - Lin Shi , Ziyou Jiang , Ye Yang 2021
Collaborative live chats are gaining popularity as a development communication tool. In community live chatting, developers are likely to post issues they encountered (e.g., setup issues and compile issues), and other developers respond with possible solutions. Therefore, community live chats contain rich sets of information for reported issues and their corresponding solutions, which can be quite useful for knowledge sharing and future reuse if extracted and restored in time. However, it remains challenging to accurately mine such knowledge due to the noisy nature of interleaved dialogs in live chat data. In this paper, we first formulate the problem of issue-solution pair extraction from developer live chat data, and propose an automated approach, named ISPY, based on natural language processing and deep learning techniques with customized enhancements, to address the problem. Specifically, ISPY automates three tasks: 1) Disentangle live chat logs, employing a feedforward neural network to disentangle a conversation history into separate dialogs automatically; 2) Detect dialogs discussing issues, using a novel convolutional neural network (CNN), which consists of a BERT-based utterance embedding layer, a context-aware dialog embedding layer, and an output layer; 3) Extract appropriate utterances and combine them as corresponding solutions, based on the same CNN structure but with different feeding inputs. To evaluate ISPY, we compare it with six baselines, utilizing a dataset with 750 dialogs including 171 issue-solution pairs and evaluate ISPY from eight open source communities. The results show that, for issue-detection, our approach achieves the F1 of 76%, and outperforms all baselines by 30%. Our approach achieves the F1 of 63% for solution-extraction and outperforms the baselines by 20%.
Spreadsheets are end-user programs and domain models that are heavily employed in administration, financial forecasting, education, and science because of their intuitive, flexible, and direct approach to computation. As a result, institutions are swamped by millions of spreadsheets that are becoming increasingly difficult to manage, access, and control. This note presents the XLSearch system, a novel search engine for spreadsheets. It indexes spreadsheet formulae and efficiently answers formula queries via unification (a complex query language that allows metavariables in both the query as well as the index). But a web-based search engine is only one application of the underlying technology: Spreadsheet formula export to web standards like MathML combined with formula indexing can be used to find similar spreadsheets or common formula errors.
Cloud-based documents are inherently valuable, due to the volume and nature of sensitive personal and business content stored in them. Despite the importance of such documents to Internet users, there are still large gaps in the understanding of what cybercriminals do when they illicitly get access to them by for example compromising the account credentials they are associated with. In this paper, we present a system able to monitor user activity on Google spreadsheets. We populated 5 Google spreadsheets with fake bank account details and fake funds transfer links. Each spreadsheet was configured to report details of accesses and clicks on links back to us. To study how people interact with these spreadsheets in case they are leaked, we posted unique links pointing to the spreadsheets on a popular paste site. We then monitored activity in the accounts for 72 days, and observed 165 accesses in total. We were able to observe interesting modifications to these spreadsheets performed by illicit accesses. For instance, we observed deletion of some fake bank account information, in addition to insults and warnings that some visitors entered in some of the spreadsheets. Our preliminary results show that our system can be used to shed light on cybercriminal behavior with regards to leaked online documents.
Although deep learning models perform remarkably well across a range of tasks such as language translation and object recognition, it remains unclear what high-level logic, if any, they follow. Understanding this logic may lead to more transparency, better model design, and faster experimentation. Recent machine learning research has leveraged statistical methods to identify hidden units that behave (e.g., activate) similarly to human understandable logic, but those analyses require considerable manual effort. Our insight is that many of those studies follow a common analysis pattern, which we term Deep Neural Inspection. There is opportunity to provide a declarative abstraction to easily express, execute, and optimize them. This paper describes DeepBase, a system to inspect neural network behaviors through a unified interface. We model logic with user-provided hypothesis functions that annotate the data with high-level labels (e.g., part-of-speech tags, image captions). DeepBase lets users quickly identify individual or groups of units that have strong statistical dependencies with desired hypotheses. We discuss how DeepBase can express existing analyses, propose a set of simple and effective optimizations to speed up a standard Python implementation by up to 72x, and reproduce recent studies from the NLP literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا